論文の概要: FedMIA: An Effective Membership Inference Attack Exploiting "All for One" Principle in Federated Learning
- arxiv url: http://arxiv.org/abs/2402.06289v2
- Date: Fri, 03 Jan 2025 07:10:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-06 15:09:54.259845
- Title: FedMIA: An Effective Membership Inference Attack Exploiting "All for One" Principle in Federated Learning
- Title(参考訳): FedMIA:フェデレートラーニングにおける"オール・フォー・ワン"原則による効果的なメンバーシップ推論攻撃
- Authors: Gongxi Zhu, Donghao Li, Hanlin Gu, Yuan Yao, Lixin Fan, Yuxing Han,
- Abstract要約: Federated Learning(FL)は、分散データ上で機械学習モデルをトレーニングするための有望なアプローチである。
メンバーシップ推論攻撃(MIA)は、特定のデータポイントがターゲットクライアントのトレーニングセットに属するかどうかを判断することを目的としている。
我々はFedMIAと呼ばれる3段階のメンバーシップ推論攻撃(MIA)手法を導入し、MIAの有効性を高めるため、複数の通信ラウンドにまたがる全クライアントからの更新を平均化する。
- 参考スコア(独自算出の注目度): 17.141646895576145
- License:
- Abstract: Federated Learning (FL) is a promising approach for training machine learning models on decentralized data while preserving privacy. However, privacy risks, particularly Membership Inference Attacks (MIAs), which aim to determine whether a specific data point belongs to a target client's training set, remain a significant concern. Existing methods for implementing MIAs in FL primarily analyze updates from the target client, focusing on metrics such as loss, gradient norm, and gradient difference. However, these methods fail to leverage updates from non-target clients, potentially underutilizing available information. In this paper, we first formulate a one-tailed likelihood-ratio hypothesis test based on the likelihood of updates from non-target clients. Building upon this formulation, we introduce a three-step Membership Inference Attack (MIA) method, called FedMIA, which follows the "all for one"--leveraging updates from all clients across multiple communication rounds to enhance MIA effectiveness. Both theoretical analysis and extensive experimental results demonstrate that FedMIA outperforms existing MIAs in both classification and generative tasks. Additionally, it can be integrated as an extension to existing methods and is robust against various defense strategies, Non-IID data, and different federated structures. Our code is available in https://github.com/Liar-Mask/FedMIA.
- Abstract(参考訳): フェデレートラーニング(FL)は、プライバシを保持しながら、分散データ上で機械学習モデルをトレーニングするための有望なアプローチである。
しかし、特定のデータポイントがターゲットクライアントのトレーニングセットに属しているかどうかを判断することを目的としたプライバシリスク、特にメンバーシップ推論攻撃(MIA)は、依然として重要な懸念事項である。
FLにMIAを実装する既存の方法は、主に目標とするクライアントからの更新を分析し、損失、勾配ノルム、勾配差などのメトリクスに焦点を当てている。
しかし、これらのメソッドは非ターゲットクライアントからの更新を活用できず、使用できない情報を利用できない可能性がある。
本稿では,まず,非ターゲットクライアントからの更新可能性に基づいて,一尾の確率比仮説を定式化する。
この定式化に基づいて,FedMIAと呼ばれる3段階のメンバシップ推論攻撃(MIA)手法を導入する。
理論的解析と広範な実験の結果は、FedMIAが既存のMIAよりも、分類タスクと生成タスクの両方で優れていることを示している。
さらに、既存の手法の拡張として統合することができ、様々な防衛戦略、非IIDデータ、異なる連合構造に対して堅牢である。
私たちのコードはhttps://github.com/Liar-Mask/FedMIA.comで利用可能です。
関連論文リスト
- Detecting Training Data of Large Language Models via Expectation Maximization [62.28028046993391]
メンバーシップ推論攻撃(MIA)は、特定のインスタンスがターゲットモデルのトレーニングデータの一部であるかどうかを判断することを目的としている。
大規模言語モデル(LLM)にMIAを適用することは、事前学習データの大規模化と、会員シップのあいまいさによって、ユニークな課題をもたらす。
EM-MIAは,予測最大化アルゴリズムを用いて,メンバーシップスコアとプレフィックススコアを反復的に洗練するLLMの新しいMIA手法である。
論文 参考訳(メタデータ) (2024-10-10T03:31:16Z) - FedBayes: A Zero-Trust Federated Learning Aggregation to Defend Against
Adversarial Attacks [1.689369173057502]
フェデレートラーニング(Federated Learning)は、クライアントデータに直接アクセスすることなく、マシンラーニングモデルをトレーニングする分散メソッドを開発した。
悪意のあるクライアントは、グローバルモデルを破壊し、フェデレーション内のすべてのクライアントのパフォーマンスを低下させることができる。
新たなアグリゲーション手法であるFedBayesは、クライアントのモデル重みの確率を計算することにより、悪意のあるクライアントの効果を緩和する。
論文 参考訳(メタデータ) (2023-12-04T21:37:50Z) - MIA-BAD: An Approach for Enhancing Membership Inference Attack and its
Mitigation with Federated Learning [6.510488168434277]
メンバシップ推論攻撃(MIA)は、機械学習(ML)モデルのプライバシを妥協するための一般的なパラダイムである。
バッチ・ワイズ・アサート・データセット(MIA-BAD)を用いた強化されたメンバーシップ推論攻撃を提案する。
FLを用いたMLモデルのトレーニング方法を示すとともに,提案したMIA-BADアプローチによる脅威をFLアプローチで緩和する方法について検討する。
論文 参考訳(メタデータ) (2023-11-28T06:51:26Z) - Practical Membership Inference Attacks against Fine-tuned Large Language Models via Self-prompt Calibration [32.15773300068426]
メンバーシップ推論攻撃は、対象のデータレコードがモデルトレーニングに使用されたかどうかを推測することを目的としている。
自己校正確率変動(SPV-MIA)に基づくメンバーシップ推論攻撃を提案する。
論文 参考訳(メタデータ) (2023-11-10T13:55:05Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
フェデレートラーニングは、さまざまな参加者の間で共通のモデルを協調的に訓練するための、広く使われているパラダイムとなっている。
多くの攻撃は、メンバーシップ、資産、または参加者データの完全な再構築のような機密情報を推測することは依然として可能であることを示した。
単純な線形モデルでは、集約されたモデル更新からクライアント固有のプロパティを効果的にキャプチャできることが示される。
論文 参考訳(メタデータ) (2023-03-07T14:11:01Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - How Does Data Augmentation Affect Privacy in Machine Learning? [94.52721115660626]
拡張データの情報を活用するために,新たなMI攻撃を提案する。
モデルが拡張データで訓練された場合、最適な会員推定値を確立する。
論文 参考訳(メタデータ) (2020-07-21T02:21:10Z) - A Framework for Evaluating Gradient Leakage Attacks in Federated
Learning [14.134217287912008]
Federated Learning(FL)は、クライアントのネットワークと協調的なモデルトレーニングのための、新興の分散機械学習フレームワークである。
最近の研究では、クライアントからフェデレーションサーバにローカルパラメータの更新を共有しても、グラデーションリーク攻撃の影響を受けやすいことが示されている。
本稿では,クライアントプライバシ漏洩攻撃のさまざまな形態の評価と比較を行うための原則的フレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-22T05:15:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。