TEE4EHR: Transformer Event Encoder for Better Representation Learning in
Electronic Health Records
- URL: http://arxiv.org/abs/2402.06367v1
- Date: Fri, 9 Feb 2024 12:19:06 GMT
- Title: TEE4EHR: Transformer Event Encoder for Better Representation Learning in
Electronic Health Records
- Authors: Hojjat Karami, David Atienza, Anisoara Ionescu
- Abstract summary: Irregular sampling of time series in electronic health records (EHRs) is one of the main challenges for developing machine learning models.
We propose a transformer event encoder (TEE) with point process loss that encodes the pattern of laboratory tests in EHRs.
In a self-supervised learning approach, the TEE is jointly learned with an existing attention-based deep neural network.
- Score: 4.385313487148474
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Irregular sampling of time series in electronic health records (EHRs) is one
of the main challenges for developing machine learning models. Additionally,
the pattern of missing data in certain clinical variables is not at random but
depends on the decisions of clinicians and the state of the patient. Point
process is a mathematical framework for analyzing event sequence data that is
consistent with irregular sampling patterns. Our model, TEE4EHR, is a
transformer event encoder (TEE) with point process loss that encodes the
pattern of laboratory tests in EHRs. The utility of our TEE has been
investigated in a variety of benchmark event sequence datasets. Additionally,
we conduct experiments on two real-world EHR databases to provide a more
comprehensive evaluation of our model. Firstly, in a self-supervised learning
approach, the TEE is jointly learned with an existing attention-based deep
neural network which gives superior performance in negative log-likelihood and
future event prediction. Besides, we propose an algorithm for aggregating
attention weights that can reveal the interaction between the events. Secondly,
we transfer and freeze the learned TEE to the downstream task for the outcome
prediction, where it outperforms state-of-the-art models for handling
irregularly sampled time series. Furthermore, our results demonstrate that our
approach can improve representation learning in EHRs and can be useful for
clinical prediction tasks.
Related papers
- An Efficient Contrastive Unimodal Pretraining Method for EHR Time Series Data [35.943089444017666]
We propose an efficient method of contrastive pretraining tailored for long clinical timeseries data.
Our model demonstrates the ability to impute missing measurements, providing clinicians with deeper insights into patient conditions.
arXiv Detail & Related papers (2024-10-11T19:05:25Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - COPER: Continuous Patient State Perceiver [13.735956129637945]
We propose a novel COntinuous patient state PERceiver model, called COPER, to cope with irregular time-series in EHRs.
neural ordinary differential equations (ODEs) help COPER to generate regular time-series to feed to Perceiver model.
To evaluate the performance of the proposed model, we use in-hospital mortality prediction task on MIMIC-III dataset.
arXiv Detail & Related papers (2022-08-05T14:32:57Z) - Improving self-supervised pretraining models for epileptic seizure
detection from EEG data [0.23624125155742057]
This paper presents various self-supervision strategies to enhance the performance of a time-series based Diffusion convolution neural network (DCRNN) model.
The learned weights in the self-supervision pretraining phase can be transferred to the supervised training phase to boost the model's prediction capability.
arXiv Detail & Related papers (2022-06-28T17:15:49Z) - Unsupervised Pre-Training on Patient Population Graphs for Patient-Level
Predictions [48.02011627390706]
Pre-training has shown success in different areas of machine learning, such as Computer Vision (CV), Natural Language Processing (NLP) and medical imaging.
In this paper, we apply unsupervised pre-training to heterogeneous, multi-modal EHR data for patient outcome prediction.
We find that our proposed graph based pre-training method helps in modeling the data at a population level.
arXiv Detail & Related papers (2022-03-23T17:59:45Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Simple Recurrent Neural Networks is all we need for clinical events
predictions using EHR data [22.81278657120305]
Recurrent neural networks (RNNs) are common architecture for EHR-based clinical events predictive models.
We used two prediction tasks: the risk for developing heart failure and the risk of early readmission for inpatient hospitalization.
We found that simple gated RNN models, including GRUs and LSTMs, often offer competitive results when properly tuned with Bayesian Optimization.
arXiv Detail & Related papers (2021-10-03T13:07:23Z) - Self-Supervised Graph Learning with Hyperbolic Embedding for Temporal
Health Event Prediction [13.24834156675212]
We propose a hyperbolic embedding method with information flow to pre-train medical code representations in a hierarchical structure.
We incorporate these pre-trained representations into a graph neural network to detect disease complications.
We present a new hierarchy-enhanced historical prediction proxy task in our self-supervised learning framework to fully utilize EHR data.
arXiv Detail & Related papers (2021-06-09T00:42:44Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.