論文の概要: Generative Adversarial Bayesian Optimization for Surrogate Objectives
- arxiv url: http://arxiv.org/abs/2402.06532v1
- Date: Fri, 9 Feb 2024 16:43:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-12 16:00:19.759808
- Title: Generative Adversarial Bayesian Optimization for Surrogate Objectives
- Title(参考訳): 代理目的に対する生成的逆ベイズ最適化
- Authors: Michael S. Yao, Yimeng Zeng, Hamsa Bastani, Jacob Gardner, James C.
Gee, Osbert Bastani
- Abstract要約: 本稿では,適応的情報源批判正規化を用いたGABO(Generative adversarial Bayesian Optimization)を提案する。
GABOは、サロゲート関数が信頼できる領域に最適化軌道を制約する。
また,本アルゴリズムはソース評論家の正則化の強度を動的に調整することを示した。
- 参考スコア(独自算出の注目度): 26.697858345250115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Offline model-based policy optimization seeks to optimize a learned surrogate
objective function without querying the true oracle objective during
optimization. However, inaccurate surrogate model predictions are frequently
encountered along the optimization trajectory. To address this limitation, we
propose generative adversarial Bayesian optimization (GABO) using adaptive
source critic regularization, a task-agnostic framework for Bayesian
optimization that employs a Lipschitz-bounded source critic model to constrain
the optimization trajectory to regions where the surrogate function is
reliable. We show that under certain assumptions for the continuous input space
prior, our algorithm dynamically adjusts the strength of the source critic
regularization. GABO outperforms existing baselines on a number of different
offline optimization tasks across a variety of scientific domains. Our code is
available at https://github.com/michael-s-yao/gabo
- Abstract(参考訳): オフラインモデルに基づくポリシー最適化は、最適化中に真のオラクルの目的を問うことなく、学習した代理対象関数を最適化しようとする。
しかし、最適化軌道に沿って不正確な代理モデル予測が頻繁に発生する。
そこで本研究では,リプシッツ境界付きソース批評家モデルを用いたベイズ最適化のためのタスク非依存フレームワークであるadaptive source critic regularizationを用いて,gabo(generative adversarial bayesian optimization)を提案する。
連続的な入力空間に対する前提条件下では,本アルゴリズムはソース批判正規化の強度を動的に調整する。
GABOは、さまざまな科学的領域にわたるさまざまなオフライン最適化タスクにおいて、既存のベースラインを上回っている。
私たちのコードはhttps://github.com/michael-s-yao/gaboで利用可能です。
関連論文リスト
- Towards Efficient Exact Optimization of Language Model Alignment [93.39181634597877]
嗜好データから直接ポリシーを最適化するために、直接選好最適化(DPO)が提案された。
問題の最適解に基づいて導出されたDPOが,現実の最適解の妥協平均探索近似に繋がることを示す。
本稿では、アライメント目的の効率的な精度最適化(EXO)を提案する。
論文 参考訳(メタデータ) (2024-02-01T18:51:54Z) - Functional Graphical Models: Structure Enables Offline Data-Driven Optimization [111.28605744661638]
構造がサンプル効率のよいデータ駆動最適化を実現する方法を示す。
また、FGM構造自体を推定するデータ駆動最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-08T22:33:14Z) - Pseudo-Bayesian Optimization [7.556071491014536]
ブラックボックス最適化の収束を保証するために最小限の要件を課す公理的枠組みについて検討する。
我々は、単純な局所回帰と、不確実性を定量化するために適切な「ランダム化事前」構造を用いることが、収束を保証するだけでなく、常に最先端のベンチマークよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-15T07:55:28Z) - ROMO: Retrieval-enhanced Offline Model-based Optimization [14.277672372460785]
データ駆動型ブラックボックスモデルベース最適化(MBO)の問題は、多くの実用的なアプリケーションシナリオで発生します。
検索強化オフラインモデルベース最適化(ROMO)を提案する。
ROMOは実装が簡単で、CoMBO設定における最先端のアプローチよりも優れている。
論文 参考訳(メタデータ) (2023-10-11T15:04:33Z) - Optimizer's Information Criterion: Dissecting and Correcting Bias in Data-Driven Optimization [16.57676001669012]
データ駆動最適化では、得られた決定のサンプル性能は通常、真の性能に対して楽観的なバイアスを生じさせる。
クロスバリデーションのような、このバイアスを修正するための一般的なテクニックは、追加の最適化問題を繰り返し解決する必要があるため、コストがかかる。
我々は一階偏差を直接近似する一般バイアス補正手法を開発し、追加の最適化問題を解く必要はない。
論文 参考訳(メタデータ) (2023-06-16T07:07:58Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
我々は,従来の最適化タスクから解を転送するアルゴリズムの能力を研究することのできる,システムの柔軟性のためのフレームワークを提案する。
NSGA-IIの柔軟性を2つの変種で検討し,1)2つのタスクの解を同時に最適化し,より適応性が高いと期待されるソース間の解を得る,2)活性化あるいは非活性化の異なる可能性に対応する能動的非アクティブなジェノタイプについて検討した。
その結果,標準NSGA-IIによる適応は目標目標への最適化に必要な評価回数を大幅に削減し,提案した変種は適応コストをさらに向上することがわかった。
論文 参考訳(メタデータ) (2023-05-31T12:07:50Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Combining Genetic Programming and Particle Swarm Optimization to
Simplify Rugged Landscapes Exploration [7.25130576615102]
元の関数のスムーズな代理モデルを構築するための新しい手法を提案する。
GP-FST-PSOサロゲートモデル(GP-FST-PSO Surrogate Model)と呼ばれる提案アルゴリズムは,グローバルな最適探索と,元のベンチマーク関数の視覚的近似の生成の両方において満足な結果が得られる。
論文 参考訳(メタデータ) (2022-06-07T12:55:04Z) - Data-driven evolutionary algorithm for oil reservoir well-placement and
control optimization [3.012067935276772]
一般化されたデータ駆動進化アルゴリズム(GDDE)は、適切な配置と制御最適化問題で実行されるシミュレーションの数を減らすために提案される。
確率的ニューラルネットワーク(PNN)は、情報的および有望な候補を選択するための分類器として採用されている。
論文 参考訳(メタデータ) (2022-06-07T09:07:49Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
計算設計の問題は、合成生物学からコンピュータアーキテクチャまで、様々な場面で発生している。
本研究では,分布外入力に対する接地的目標の実際の値を低くする目的関数のモデルを学習する手法を提案する。
COMは、様々なMBO問題に対して、既存のメソッドの実装と性能の面では単純である。
論文 参考訳(メタデータ) (2021-07-14T17:55:28Z) - Bayesian Optimization for Selecting Efficient Machine Learning Models [53.202224677485525]
本稿では,予測効率とトレーニング効率の両面において,モデルを協調最適化するための統一ベイズ最適化フレームワークを提案する。
レコメンデーションタスクのためのモデル選択の実験は、この方法で選択されたモデルがモデルのトレーニング効率を大幅に改善することを示している。
論文 参考訳(メタデータ) (2020-08-02T02:56:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。