論文の概要: Bandit Convex Optimisation
- arxiv url: http://arxiv.org/abs/2402.06535v1
- Date: Fri, 9 Feb 2024 16:49:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-12 16:00:26.988871
- Title: Bandit Convex Optimisation
- Title(参考訳): Bandit Convexの最適化
- Authors: Tor Lattimore
- Abstract要約: 帯域凸最適化(Bandit convex optimisation)は、ゼロ階凸最適化を研究するための基本的なフレームワークである。
これらのメモには、平面法、内部点法、連続指数重み付け、降下、オンラインニュートンステップなど、この問題に使用される多くのツールが記載されている。
- 参考スコア(独自算出の注目度): 25.932558721044572
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bandit convex optimisation is a fundamental framework for studying
zeroth-order convex optimisation. These notes cover the many tools used for
this problem, including cutting plane methods, interior point methods,
continuous exponential weights, gradient descent and online Newton step. The
nuances between the many assumptions and setups are explained. Although there
is not much truly new here, some existing tools are applied in novel ways to
obtain new algorithms. A few bounds are improved in minor ways.
- Abstract(参考訳): 帯域凸最適化は、ゼロ階凸最適化を研究するための基本的なフレームワークである。
これらのメモには、平面法、内部点法、連続指数重み付け、勾配降下、オンラインニュートンステップなど、この問題に使用される多くのツールが含まれている。
多くの仮定と設定の間のニュアンスを説明します。
ここにはそれほど新しいものはないが、既存のツールの中には新しいアルゴリズムを得るために新しい方法を適用するものもある。
いくつかの制限は小さな点で改善されている。
関連論文リスト
- Shuffling Gradient-Based Methods for Nonconvex-Concave Minimax Optimization [20.093236438944718]
我々は非線形ミニマックス問題に対処する新しい勾配法を開発した。
提案手法は,他の手法と同等の結果が得られることを示す。
論文 参考訳(メタデータ) (2024-10-29T17:47:22Z) - Methods for Convex $(L_0,L_1)$-Smooth Optimization: Clipping, Acceleration, and Adaptivity [50.25258834153574]
我々は、(強に)凸 $(L0)$-smooth 関数のクラスに焦点を当て、いくつかの既存のメソッドに対する新しい収束保証を導出する。
特に,スムーズなグラディエント・クリッピングを有するグラディエント・ディフレッシュと,ポリアク・ステップサイズを有するグラディエント・ディフレッシュのコンバージェンス・レートの改善を導出した。
論文 参考訳(メタデータ) (2024-09-23T13:11:37Z) - Learning to Remove Cuts in Integer Linear Programming [57.15699051569638]
本研究では, 学習可能なパラメトリック基準の下で, 手法の前回の繰り返しで導入された前回のカットの除去について検討する。
基本的な最適化設定では、カット削除ポリシーは、ヒューマンベースおよび機械学習誘導のカット追加ポリシーよりも大幅に改善される可能性があることを実証する。
論文 参考訳(メタデータ) (2024-06-26T22:50:43Z) - On the convergence of adaptive first order methods: proximal gradient and alternating minimization algorithms [4.307128674848627]
AdaPG$q,r$は、より大きな段階的なポリシーと改善された下位境界を提供することで、既存の結果を統一し、拡張するフレームワークである。
パラメータの$q$と$r$の異なる選択について論じ、数値シミュレーションにより結果の有効性を実証する。
論文 参考訳(メタデータ) (2023-11-30T10:29:43Z) - Universal Online Learning with Gradient Variations: A Multi-layer Online Ensemble Approach [57.92727189589498]
本稿では,2段階の適応性を持つオンライン凸最適化手法を提案する。
我々は$mathcalO(log V_T)$, $mathcalO(d log V_T)$, $hatmathcalO(sqrtV_T)$ regret bounds for strong convex, exp-concave and convex loss function。
論文 参考訳(メタデータ) (2023-07-17T09:55:35Z) - Infeasible Deterministic, Stochastic, and Variance-Reduction Algorithms for Optimization under Orthogonality Constraints [9.301728976515255]
本稿では,着陸アルゴリズムの実用化と理論的展開について述べる。
まず、この方法はスティーフェル多様体に拡張される。
また、コスト関数が多くの関数の平均である場合の分散還元アルゴリズムについても検討する。
論文 参考訳(メタデータ) (2023-03-29T07:36:54Z) - Stochastic Gradient Methods with Preconditioned Updates [47.23741709751474]
このような問題に対するアルゴリズムはいくつかあるが、既存の手法は、スケールが悪く、あるいは条件が悪ければ、しばしばうまく機能しない。
ここではハッチンソンの対角ヘッセン近似のアプローチに基づく前提条件を含む。
我々は滑らかさとPL条件が仮定されるときの収束性を証明する。
論文 参考訳(メタデータ) (2022-06-01T07:38:08Z) - Minimax Optimization: The Case of Convex-Submodular [50.03984152441271]
ミニマックス問題は連続領域を超えて連続離散領域や完全離散領域にまで拡張される。
連続変数に関して目的が凸であり、離散変数に関して部分モジュラーであるような凸-部分モジュラーミニマックス問題のクラスを導入する。
提案アルゴリズムは反復的であり、離散最適化と連続最適化の両方のツールを組み合わせる。
論文 参考訳(メタデータ) (2021-11-01T21:06:35Z) - Hybrid Trilinear and Bilinear Programming for Aligning Partially
Overlapping Point Sets [85.71360365315128]
多くの応用において、部分重なり合う点集合が対応するRPMアルゴリズムに不変であるようなアルゴリズムが必要である。
まず、目的が立方体有界関数であることを示し、次に、三線型および双線型単相変換の凸エンベロープを用いて、その下界を導出する。
次に、変換変数上の分岐のみを効率よく実行するブランチ・アンド・バウンド(BnB)アルゴリズムを開発する。
論文 参考訳(メタデータ) (2021-01-19T04:24:23Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
構造凸最適化問題に対する条件勾配に基づく2つの新しい解法を提案する。
私たちのフレームワークの最も重要な特徴は、各イテレーションで制約のサブセットだけが処理されることです。
提案アルゴリズムは, 条件勾配のステップとともに, 分散の低減と平滑化に頼り, 厳密な収束保証を伴っている。
論文 参考訳(メタデータ) (2020-07-07T21:26:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。