論文の概要: Estimating Player Performance in Different Contexts Using Fine-tuned Large Events Models
- arxiv url: http://arxiv.org/abs/2402.06815v2
- Date: Fri, 26 Apr 2024 11:43:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 17:28:28.585349
- Title: Estimating Player Performance in Different Contexts Using Fine-tuned Large Events Models
- Title(参考訳): 微調整大イベントモデルを用いた異なるコンテキストにおけるプレイヤーパフォーマンスの推定
- Authors: Tiago Mendes-Neves, Luís Meireles, João Mendes-Moreira,
- Abstract要約: 本稿では,Large Event Models (LEM) のサッカー解析への応用について紹介する。
LEMは、単語ではなく、後続のイベントの変数を予測する。
我々は、2017-18シーズンのプレミアリーグシーズンのWyScoutデータセットによる微調整LEMに焦点を当てている。
- 参考スコア(独自算出の注目度): 0.7373617024876725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces an innovative application of Large Event Models (LEMs), akin to Large Language Models, to the domain of soccer analytics. By learning the language of soccer - predicting variables for subsequent events rather than words - LEMs facilitate the simulation of matches and offer various applications, including player performance prediction across different team contexts. We focus on fine-tuning LEMs with the WyScout dataset for the 2017-2018 Premier League season to derive specific insights into player contributions and team strategies. Our methodology involves adapting these models to reflect the nuanced dynamics of soccer, enabling the evaluation of hypothetical transfers. Our findings confirm the effectiveness and limitations of LEMs in soccer analytics, highlighting the model's capability to forecast teams' expected standings and explore high-profile scenarios, such as the potential effects of transferring Cristiano Ronaldo or Lionel Messi to different teams in the Premier League. This analysis underscores the importance of context in evaluating player quality. While general metrics may suggest significant differences between players, contextual analyses reveal narrower gaps in performance within specific team frameworks.
- Abstract(参考訳): 本稿では,Large Event Models (LEMs) のサッカー分析分野への応用について紹介する。
サッカーの言語を学ぶことで、言葉ではなく後続のイベントの変数を予測することで、LEMはマッチのシミュレーションを促進し、異なるチームコンテキストにわたるプレイヤーのパフォーマンス予測を含むさまざまなアプリケーションを提供します。
我々は、2017-2018年のプレミアリーグシーズンのWyScoutデータセットを使って、プレーヤーのコントリビューションとチーム戦略に関する具体的な洞察を得るための微調整LEMに焦点を当てている。
提案手法は,これらのモデルを用いてサッカーのニュアンスド・ダイナミクスを反映し,仮説移動の評価を可能にする。
サッカー分析におけるLEMの有効性と限界を確認し,プレミアリーグの異なるチームにCrisティアーノ・ロナルドやライオネル・メッシを移籍させる可能性など,チームの期待する立場を予測し,注目されるシナリオを探索するモデルの能力を強調した。
この分析は、プレイヤーの品質を評価する上での文脈の重要性を浮き彫りにする。
一般的なメトリクスはプレイヤー間で大きな違いを示すかもしれませんが、コンテキスト分析によって特定のチームフレームワーク内のパフォーマンスのギャップが狭くなります。
関連論文リスト
- MatchTime: Towards Automatic Soccer Game Commentary Generation [52.431010585268865]
観客の視聴体験を改善するために,自動サッカーゲーム解説モデルの構築を検討する。
まず、既存のデータセットでよく見られるビデオテキストのミスアライメントを観察し、49試合のタイムスタンプを手動でアノテートする。
第2に,既存のデータセットを自動的に修正・フィルタリングするマルチモーダル時間アライメントパイプラインを提案する。
第3に、キュレートされたデータセットに基づいて、MatchVoiceという自動コメント生成モデルをトレーニングします。
論文 参考訳(メタデータ) (2024-06-26T17:57:25Z) - The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
大規模言語モデルの英語と非英語のパフォーマンスのギャップを埋めるための質問アライメントフレームワークを提案する。
実験結果から、さまざまな推論シナリオ、モデルファミリー、サイズにわたって、多言語のパフォーマンスを向上できることが示された。
我々は、表現空間、生成された応答とデータスケールを分析し、質問翻訳訓練がLLM内の言語アライメントをどのように強化するかを明らかにする。
論文 参考訳(メタデータ) (2024-05-02T14:49:50Z) - Forecasting Events in Soccer Matches Through Language [0.7373617024876725]
本稿では,サッカーの試合における次の事象を予測するためのアプローチを紹介する。
これはLarge Language Models (LLM) が直面している問題と顕著に類似している。
論文 参考訳(メタデータ) (2024-02-09T23:02:57Z) - ShuttleSHAP: A Turn-Based Feature Attribution Approach for Analyzing
Forecasting Models in Badminton [52.21869064818728]
バドミントンにおけるプレイヤー戦術予測のための深層学習アプローチは、部分的にはラリープレイヤの相互作用に関する効果的な推論に起因する有望なパフォーマンスを示している。
本稿では,Shapley値の変量に基づいてバドミントンにおける予測モデルを解析するためのターンベース特徴属性手法であるShuttleSHAPを提案する。
論文 参考訳(メタデータ) (2023-12-18T05:37:51Z) - Bayes-xG: Player and Position Correction on Expected Goals (xG) using
Bayesian Hierarchical Approach [55.2480439325792]
本研究は, 期待目標(xG)測定値を用いて, 目標となるショットの予測における選手や位置要因の影響について検討した。
StatsBombの公開データを使って、イングランドのプレミアリーグから1万発のショットを分析している。
この研究は、スペインのラ・リガとドイツのブンデスリーガのデータに分析を拡張し、同等の結果を得た。
論文 参考訳(メタデータ) (2023-11-22T21:54:02Z) - GameEval: Evaluating LLMs on Conversational Games [93.40433639746331]
大規模言語モデル(LLM)を評価する新しいアプローチであるGameEvalを提案する。
GameEvalはLSMをゲームプレイヤーとして扱い、様々な形式の会話を起動することで達成した特定の目標にそれぞれ異なる役割を割り当てる。
我々は,GameEvalが様々なLLMの能力を効果的に差別化することができ,複雑な問題を解決するための統合能力を総合的に評価できることを示した。
論文 参考訳(メタデータ) (2023-08-19T14:33:40Z) - Transformer-Based Neural Marked Spatio Temporal Point Process Model for
Football Match Events Analysis [0.6946929968559495]
本稿では,ニューラル・テンポラル・ポイント・プロセス・フレームワークに基づくフットボール・イベント・データのモデルを提案する。
検証のために,サッカーチームの最終ランキング,平均ゴールスコア,シーズン平均xGとの関係を検討した。
平均HPUSはゴールやショットの詳細を使わずとも有意な相関を示した。
論文 参考訳(メタデータ) (2023-02-18T10:02:45Z) - Explainable expected goal models for performance analysis in football
analytics [5.802346990263708]
本報告では,2014-15年と2020-21年の7シーズンから315,430発のショットをトレーニングした,欧州サッカーリーグのトップ5のゴールモデルを提案する。
我々の知る限りでは、この論文は、プロファイルを集約した説明可能な人工知能ツールの実用的な応用を実証した最初の論文である。
論文 参考訳(メタデータ) (2022-06-14T23:56:03Z) - Transfer Portal: Accurately Forecasting the Impact of a Player Transfer
in Soccer [0.0]
異なるリーグ間で転送される場合、将来のプレイヤーのパフォーマンスを予測することは複雑な作業である。
本稿では,これらの問題に対処し,今後の性能を正確に予測する手法を提案する。
我々のTransfer Portalモデルは、プレイヤー、チーム、リーグのスタイリスティックなレベルの入力表現と能力レベルの入力表現の両方にパーソナライズされたニューラルネットワークを使用して、選択されたクラブの選手のパフォーマンスをシミュレートする。
論文 参考訳(メタデータ) (2022-01-27T14:15:09Z) - "Why Would I Trust Your Numbers?" On the Explainability of Expected
Values in Soccer [5.825190876052149]
本稿では,ショットの期待値を推定する,説明可能な一般化付加モデルを提案する。
我々は、練習者が慣れ親しんだピッチ上の指定されたゾーンにショットをファジィに割り当てることで、ショットの位置を表現している。
実験により,我々のモデルは既存のモデルと同じくらい正確であり,サッカー実践者には説明し易いことがわかった。
論文 参考訳(メタデータ) (2021-05-27T10:05:00Z) - Game Plan: What AI can do for Football, and What Football can do for AI [83.79507996785838]
予測的および規範的フットボール分析は、統計学習、ゲーム理論、コンピュータビジョンの交差点における新たな発展と進歩を必要とする。
フットボール分析は、サッカー自体のゲームを変えるだけでなく、この領域がAIの分野で何を意味するのかという観点からも、非常に価値の高いゲームチェンジャーであることを示す。
論文 参考訳(メタデータ) (2020-11-18T10:26:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。