Photonic quantum information processing using the frequency continuous-variable of single photons
- URL: http://arxiv.org/abs/2402.06962v2
- Date: Wed, 26 Jun 2024 11:58:55 GMT
- Title: Photonic quantum information processing using the frequency continuous-variable of single photons
- Authors: Nicolas Fabre, Ulysse Chabaud,
- Abstract summary: We show that the richness of two-photon interferometry extends to the realm of time-frequency interferometry.
We introduce an interferometric strategy using a frequency engineered two-photon state allowing to reach Heisenberg scaling for phase estimation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The celebrated Hong--Ou--Mandel effect illustrates the richness of two-photon interferometry. In this work, we show that this richness extends to the realm of time-frequency interferometry. Taking advantage of the mathematical analogy which can be drawn between the frequency and quadrature degrees of freedom of light when there is a single photon in each auxiliary mode, we consider the equivalent of the Hong--Ou--Mandel effect in the frequency domain. In this setting, the $n$-Fock state becomes equivalent to a single-photon state with a spectral wave function given by the $n^{th}$ Hermite--Gauss function and destructive interference corresponds to vanishing probability of detecting single photons with an order one Hermite--Gauss spectral profile. This intriguing analogy leads us to introduce an interferometric strategy using a frequency engineered two-photon state allowing to reach Heisenberg scaling for phase estimation, and to generalise the Gaussian Boson Sampling model to time-frequency degrees of freedom of single photons.
Related papers
- Full characterization of biphotons with a generalized quantum interferometer [1.626982790782648]
We propose a theoretical approach to achieving the complete tomography of biphotons by introducing a frequency shift in one arm of the combination interferometer.
Our method, a generalized combination interferometer, enables the reconstruction of the full complex joint spectral amplitude associated with both frequency sum and difference in a single interferometer.
This provides an alternative method for full characterization of an arbitrary two-photon state with exchange symmetry and holds potential for applications in high-dimensional quantum information processing.
arXiv Detail & Related papers (2023-11-14T13:47:33Z) - NOON-state interference in the frequency domain [7.320599749915842]
In this paper, we demonstrate the photon number path entanglement in the frequency domain by implementing a frequency beam splitter.
The two-photon NOON state in a single-mode fiber is generated in the frequency domain, manifesting the two-photon interference with two-fold enhanced resolution.
This successful translation of quantum states in the frequency domain will pave the way toward the discovery of fascinating quantum phenomena and scalable quantum information processing.
arXiv Detail & Related papers (2023-11-01T07:14:27Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Complete spectral characterization of biphotons by simultaneously
determining its frequency sum and difference in a single quantum
interferometer [0.0]
We propose a novel quantum interferometer in which the NOON state interferometer (NOONI) is combined with the Hong-Ou-Mandel interferometer (HOMI)
It can simultaneously obtain the spectral correlation information of biphotons in both frequency sum and difference.
arXiv Detail & Related papers (2023-05-23T06:40:10Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Controlling Frequency-Domain Hong-Ou-Mandel Interference via
Electromagnetically Induced Transparency [5.467400475482669]
Hong-Ou-Mandel (HOM) interference is a compelling quantum phenomenon that demonstrates the nonclassical nature of single photons.
In this study, we investigate an electromagnetically induced transparency-based double-$Lambda$ four-wave mixing system.
arXiv Detail & Related papers (2023-02-14T08:22:09Z) - Quantum fluctuations in the small Fabry-Perot interferometer [77.34726150561087]
We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
arXiv Detail & Related papers (2022-12-27T10:02:25Z) - Parameter estimation of time and frequency shifts with generalized HOM
interferometry [0.0]
Hong-Ou-Mandel interferometry takes advantage of the quantum nature of two-photon interference to increase the resolution of precision measurements of time-delays.
We analyze how the precision of Hong-Ou-Mandel interferometers can be significantly improved by engineering the spectral distribution of two-photon probe states.
arXiv Detail & Related papers (2021-06-01T17:38:13Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.