Refined Sample Complexity for Markov Games with Independent Linear Function Approximation
- URL: http://arxiv.org/abs/2402.07082v2
- Date: Tue, 11 Jun 2024 12:12:59 GMT
- Title: Refined Sample Complexity for Markov Games with Independent Linear Function Approximation
- Authors: Yan Dai, Qiwen Cui, Simon S. Du,
- Abstract summary: Markov Games (MG) is an important model for Multi-Agent Reinforcement Learning (MARL)
This paper first refines the AVLPR framework by Wang et al. (2023), with an insight of designing pessimistic estimation of the sub-optimality gap.
We give the first algorithm that tackles the curse of multi-agents, attains the optimal $O(T-1/2) convergence rate, and avoids $textpoly(A_max)$ dependency simultaneously.
- Score: 49.5660193419984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Markov Games (MG) is an important model for Multi-Agent Reinforcement Learning (MARL). It was long believed that the "curse of multi-agents" (i.e., the algorithmic performance drops exponentially with the number of agents) is unavoidable until several recent works (Daskalakis et al., 2023; Cui et al., 2023; Wang et al., 2023). While these works resolved the curse of multi-agents, when the state spaces are prohibitively large and (linear) function approximations are deployed, they either had a slower convergence rate of $O(T^{-1/4})$ or brought a polynomial dependency on the number of actions $A_{\max}$ -- which is avoidable in single-agent cases even when the loss functions can arbitrarily vary with time. This paper first refines the AVLPR framework by Wang et al. (2023), with an insight of designing *data-dependent* (i.e., stochastic) pessimistic estimation of the sub-optimality gap, allowing a broader choice of plug-in algorithms. When specialized to MGs with independent linear function approximations, we propose novel *action-dependent bonuses* to cover occasionally extreme estimation errors. With the help of state-of-the-art techniques from the single-agent RL literature, we give the first algorithm that tackles the curse of multi-agents, attains the optimal $O(T^{-1/2})$ convergence rate, and avoids $\text{poly}(A_{\max})$ dependency simultaneously.
Related papers
- Near-Optimal Online Learning for Multi-Agent Submodular Coordination: Tight Approximation and Communication Efficiency [52.60557300927007]
We present a $textbfMA-OSMA$ algorithm to transfer the discrete submodular problem into a continuous optimization.
We also introduce a projection-free $textbfMA-OSEA$ algorithm, which effectively utilizes the KL divergence by mixing a uniform distribution.
Our algorithms significantly improve the $(frac11+c)$-approximation provided by the state-of-the-art OSG algorithm.
arXiv Detail & Related papers (2025-02-07T15:57:56Z) - Minimax-Optimal Multi-Agent Robust Reinforcement Learning [7.237817437521988]
We extend the Q-FTRL algorithm citepli2022minimax to the RMGs in finite-horizon setting, assuming access to a generative model.
We prove that the proposed algorithm achieves an $varepsilon$-robust coarse correlated equilibrium (CCE) with a sample complexity (up to log factors) of $widetildeOleft(H3Ssum_i=1mA_iminleftH,1/Rright/varepsilon2right), where $S$ denotes the
arXiv Detail & Related papers (2024-12-27T16:37:33Z) - MGDA Converges under Generalized Smoothness, Provably [27.87166415148172]
Multi-objective optimization (MOO) is receiving more attention in various fields such as multi-task learning.
Recent works provide some effective algorithms with theoretical analysis but they are limited by the standard $L$-smooth or bounded-gradient assumptions.
We study a more general and realistic class of generalized $ell$-smooth loss functions, where $ell$ is a general non-decreasing function of gradient norm.
arXiv Detail & Related papers (2024-05-29T18:36:59Z) - Sample-Efficient Multi-Agent RL: An Optimization Perspective [103.35353196535544]
We study multi-agent reinforcement learning (MARL) for the general-sum Markov Games (MGs) under the general function approximation.
We introduce a novel complexity measure called the Multi-Agent Decoupling Coefficient (MADC) for general-sum MGs.
We show that our algorithm provides comparable sublinear regret to the existing works.
arXiv Detail & Related papers (2023-10-10T01:39:04Z) - Cooperative Thresholded Lasso for Sparse Linear Bandit [6.52540785559241]
We present a novel approach to address the multi-agent sparse contextual linear bandit problem.
It is first algorithm that tackles row-wise distributed data in sparse linear bandits.
It is widely applicable to high-dimensional multi-agent problems where efficient feature extraction is critical for minimizing regret.
arXiv Detail & Related papers (2023-05-30T16:05:44Z) - Variance-Dependent Regret Bounds for Linear Bandits and Reinforcement
Learning: Adaptivity and Computational Efficiency [90.40062452292091]
We present the first computationally efficient algorithm for linear bandits with heteroscedastic noise.
Our algorithm is adaptive to the unknown variance of noise and achieves an $tildeO(d sqrtsum_k = 1K sigma_k2 + d)$ regret.
We also propose a variance-adaptive algorithm for linear mixture Markov decision processes (MDPs) in reinforcement learning.
arXiv Detail & Related papers (2023-02-21T00:17:24Z) - Refined Regret for Adversarial MDPs with Linear Function Approximation [50.00022394876222]
We consider learning in an adversarial Decision Process (MDP) where the loss functions can change arbitrarily over $K$ episodes.
This paper provides two algorithms that improve the regret to $tildemathcal O(K2/3)$ in the same setting.
arXiv Detail & Related papers (2023-01-30T14:37:21Z) - A Law of Iterated Logarithm for Multi-Agent Reinforcement Learning [3.655021726150368]
In Multi-Agent Reinforcement Learning (MARL), multiple agents interact with a common environment, as also with each other, for solving a shared problem in sequential decision-making.
We derive a novel law of iterated for a family of distributed nonlinear approximation schemes that is useful in MARL.
arXiv Detail & Related papers (2021-10-27T08:01:17Z) - The Power of Exploiter: Provable Multi-Agent RL in Large State Spaces [36.097537237660234]
We propose an algorithm that can provably find the Nash equilibrium policy using a number of samples.
A key component of our new algorithm is the exploiter, which facilitates the learning of the main player by deliberately exploiting her weakness.
Our theoretical framework is generic, which applies to a wide range of models including but not limited to MGs, MGs with linear or kernel function approximation, and MGs with rich observations.
arXiv Detail & Related papers (2021-06-07T05:39:09Z) - Model-Based Multi-Agent RL in Zero-Sum Markov Games with Near-Optimal
Sample Complexity [67.02490430380415]
We show that model-based MARL achieves a sample complexity of $tilde O(|S||B|(gamma)-3epsilon-2)$ for finding the Nash equilibrium (NE) value up to some $epsilon$ error.
We also show that such a sample bound is minimax-optimal (up to logarithmic factors) if the algorithm is reward-agnostic, where the algorithm queries state transition samples without reward knowledge.
arXiv Detail & Related papers (2020-07-15T03:25:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.