論文の概要: Effort and Size Estimation in Software Projects with Large Language
Model-based Intelligent Interfaces
- arxiv url: http://arxiv.org/abs/2402.07158v1
- Date: Sun, 11 Feb 2024 11:03:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-13 17:21:16.531334
- Title: Effort and Size Estimation in Software Projects with Large Language
Model-based Intelligent Interfaces
- Title(参考訳): 大規模言語モデルに基づくインテリジェントインタフェースを用いたソフトウェアプロジェクトの取り組みと規模推定
- Authors: Claudionor N. Coelho Jr, Hanchen Xiong, Tushar Karayil, Sree Koratala,
Rex Shang, Jacob Bollinger, Mohamed Shabar, Syam Nair
- Abstract要約: 我々は,開発作業の見積もりを可能にする自然言語ベースの質問の仕様を強化する新しい方法を提案する。
本稿では,従来の手法との比較を行い,自然言語に基づく質問の仕様を強化する新しい方法を提案する。
- 参考スコア(独自算出の注目度): 0.421802966720434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advancement of Large Language Models (LLM) has also resulted in an
equivalent proliferation in its applications. Software design, being one, has
gained tremendous benefits in using LLMs as an interface component that extends
fixed user stories. However, inclusion of LLM-based AI agents in software
design often poses unexpected challenges, especially in the estimation of
development efforts. Through the example of UI-based user stories, we provide a
comparison against traditional methods and propose a new way to enhance
specifications of natural language-based questions that allows for the
estimation of development effort by taking into account data sources,
interfaces and algorithms.
- Abstract(参考訳): 大規模言語モデル(llm)の進歩もまた、その応用における同等の増殖をもたらした。
ソフトウェア設計は、固定されたユーザストーリーを拡張するインターフェイスコンポーネントとしてllmを使用することで、大きな利益を得ています。
しかしながら、ソフトウェア設計にLLMベースのAIエージェントを組み込むことは、特に開発作業の推定において、予期せぬ課題を引き起こすことが多い。
uiベースのユーザストーリーの例を通じて、従来の方法との比較を行い、データソース、インターフェース、アルゴリズムを考慮して開発作業の推定を可能にする自然言語ベースの質問の仕様を強化する新しい方法を提案する。
関連論文リスト
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - A Survey: Collaborative Hardware and Software Design in the Era of Large Language Models [16.250856588632637]
大規模言語モデル(LLM)の急速な発展は、人工知能の分野を大きく変えた。
これらのモデルは多様なアプリケーションに統合され、研究と産業の両方に影響を及ぼす。
本稿では,大規模言語モデルの特徴と制約に対処するために,ハードウェアとソフトウェアの共同設計手法について検討する。
論文 参考訳(メタデータ) (2024-10-08T21:46:52Z) - Optimizing Token Usage on Large Language Model Conversations Using the Design Structure Matrix [49.1574468325115]
大規模言語モデルは、多くの分野やタスクにおいてユビキタスになる。
トークンの使用を減らすこと、短いコンテキストウィンドウ、限られた出力サイズ、トークンの取り込みと生成に関連するコストといった課題を克服する必要がある。
この作業は、エンジニアリング設計の分野からLLM会話最適化にデザイン構造マトリックスをもたらす。
論文 参考訳(メタデータ) (2024-10-01T14:38:36Z) - Chatbot-Based Ontology Interaction Using Large Language Models and Domain-Specific Standards [41.19948826527649]
大規模言語モデル(LLM)は、SPARQLクエリ生成を強化するために使用される。
システムはユーザーの問い合わせを正確なSPARQLクエリに変換する。
確立されたドメイン固有の標準からの追加情報がインターフェースに統合される。
論文 参考訳(メタデータ) (2024-07-22T11:58:36Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
マルチモーダル参照から画素単位のオブジェクト認識と自然言語記述を生成できる汎用MLLMモデルであるbfAnyRefを提案する。
本モデルでは,領域レベルの参照表現生成とセグメンテーションの多様さを含む,複数のベンチマークにおける最先端結果を実現する。
論文 参考訳(メタデータ) (2024-03-05T13:45:46Z) - AXOLOTL: Fairness through Assisted Self-Debiasing of Large Language
Model Outputs [20.772266479533776]
AXOLOTLはタスクやモデル間で不可知的に動作する新しい後処理フレームワークである。
バイアスを識別し、解像度を提案し、モデルにアウトプットを自己バイアスさせる。
このアプローチは計算コストを最小化し、モデル性能を保存する。
論文 参考訳(メタデータ) (2024-03-01T00:02:37Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Redefining Developer Assistance: Through Large Language Models in Software Ecosystem [0.5580128181112308]
本稿では,インストラクションチューニングによって開発されたDevAssistLlamaを紹介し,ソフトウェア関連自然言語クエリの処理を支援する。
DevAssistLlamaは、特に複雑な技術ドキュメントの扱いに長けており、ソフトウェア固有のタスクにおける開発者の能力を向上させる。
論文 参考訳(メタデータ) (2023-12-09T18:02:37Z) - LM-Polygraph: Uncertainty Estimation for Language Models [71.21409522341482]
不確実性推定(UE)手法は、大規模言語モデル(LLM)の安全性、責任性、効果的な利用のための1つの経路である。
テキスト生成タスクにおけるLLMの最先端UEメソッドのバッテリを実装したフレームワークであるLM-PolygraphをPythonで統一したプログラムインタフェースで導入する。
研究者によるUEテクニックの一貫した評価のための拡張可能なベンチマークと、信頼スコア付き標準チャットダイアログを強化するデモWebアプリケーションを導入している。
論文 参考訳(メタデータ) (2023-11-13T15:08:59Z) - A Survey of Large Language Models [81.06947636926638]
言語モデリングは、過去20年間、言語理解と生成のために広く研究されてきた。
近年,大規模コーパス上でのトランスフォーマーモデルの事前学習により,事前学習言語モデル (PLM) が提案されている。
パラメータスケールの違いを識別するために、研究コミュニティは大規模言語モデル (LLM) という用語を提唱した。
論文 参考訳(メタデータ) (2023-03-31T17:28:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。