論文の概要: Large Language Models for Code Generation: The Practitioners Perspective
- arxiv url: http://arxiv.org/abs/2501.16998v1
- Date: Tue, 28 Jan 2025 14:52:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:42:18.733290
- Title: Large Language Models for Code Generation: The Practitioners Perspective
- Title(参考訳): コード生成のための大規模言語モデル:実践者の視点から
- Authors: Zeeshan Rasheed, Muhammad Waseem, Kai Kristian Kemell, Aakash Ahmad, Malik Abdul Sami, Jussi Rasku, Kari Systä, Pekka Abrahamsson,
- Abstract要約: 大きな言語モデル(LLM)は、自然言語のプロンプトからソースコードを生成することができるコーディングアシスタントとして登場した。
自然言語のプロンプトに基づいてコードを生成し,実行するための多モデル統合プラットフォームを提案し,開発する。
我々は4大陸11カ国から60人のソフトウェア実践者を対象に,各モデルのユーザビリティ,パフォーマンス,強み,限界を評価する調査を行った。
- 参考スコア(独自算出の注目度): 4.946128083535776
- License:
- Abstract: Large Language Models (LLMs) have emerged as coding assistants, capable of generating source code from natural language prompts. With the increasing adoption of LLMs in software development, academic research and industry based projects are developing various tools, benchmarks, and metrics to evaluate the effectiveness of LLM-generated code. However, there is a lack of solutions evaluated through empirically grounded methods that incorporate practitioners perspectives to assess functionality, syntax, and accuracy in real world applications. To address this gap, we propose and develop a multi-model unified platform to generate and execute code based on natural language prompts. We conducted a survey with 60 software practitioners from 11 countries across four continents working in diverse professional roles and domains to evaluate the usability, performance, strengths, and limitations of each model. The results present practitioners feedback and insights into the use of LLMs in software development, including their strengths and weaknesses, key aspects overlooked by benchmarks and metrics, and a broader understanding of their practical applicability. These findings can help researchers and practitioners make informed decisions for systematically selecting and using LLMs in software development projects. Future research will focus on integrating more diverse models into the proposed system, incorporating additional case studies, and conducting developer interviews for deeper empirical insights into LLM-driven software development.
- Abstract(参考訳): 大きな言語モデル(LLM)は、自然言語のプロンプトからソースコードを生成することができるコーディングアシスタントとして登場した。
ソフトウェア開発におけるLLMの採用の増加に伴い、学術研究と産業ベースのプロジェクトは、LLM生成コードの有効性を評価するための様々なツール、ベンチマーク、メトリクスを開発している。
しかし、実世界のアプリケーションで機能、構文、正確性を評価するために実践者の視点を取り入れた実証的な手法によって評価されるソリューションが不足している。
このギャップに対処するために、自然言語のプロンプトに基づいてコードを生成し実行するためのマルチモデル統合プラットフォームを提案し、開発する。
各モデルのユーザビリティ、パフォーマンス、強み、限界を評価するため、私たちは4大陸11カ国から60人のソフトウェア実践者を対象に調査を行いました。
結果は,LLMの強みや弱点,ベンチマークやメトリクスに見落とされた重要な側面,実用性に関するより広範な理解など,ソフトウェア開発における利用に対する実践者のフィードバックと洞察を提示する。
これらの発見は、研究者や実践者がソフトウェア開発プロジェクトでLLMを体系的に選択し、使用するための情報的な決定を下すのに役立つ。
今後の研究は、提案システムへのより多様なモデルの統合、さらなるケーススタディの導入、LLM駆動ソフトウェア開発に関するより深い経験的な洞察のための開発者インタビューの実施に重点を置いている。
関連論文リスト
- Responsible Multilingual Large Language Models: A Survey of Development, Applications, and Societal Impact [5.803667039914564]
この作業は、実運用環境におけるMLLMの開発とデプロイのためのエンドツーエンドフレームワークを提供することによって、ギャップを埋める。
調査の結果,世界言語の88.38%が低資源言語に分類されるなど,言語多様性を支える上で重要な課題が明らかになった。
この調査は、より包括的で効果的な多言語AIシステムの開発に取り組んでいる実践者や研究者にとって不可欠なガイダンスを提供する。
論文 参考訳(メタデータ) (2024-10-23T03:19:15Z) - A Survey on Evaluating Large Language Models in Code Generation Tasks [30.256255254277914]
本稿では,コード生成タスクにおけるLarge Language Models (LLMs) の性能評価に使用される現在の手法と指標について概説する。
自動ソフトウェア開発の需要が急速に増加し、LLMはコード生成の分野で大きな可能性を示してきた。
論文 参考訳(メタデータ) (2024-08-29T12:56:06Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
MLLM(Multimodal Large Language Models)は、単一のモダリティシステムの能力を超えた現実世界のアプリケーションの複雑さに対処する。
本稿では,自然言語,視覚,音声などのマルチモーダルタスクにおけるMLLMの応用を体系的に整理する。
論文 参考訳(メタデータ) (2024-08-02T15:14:53Z) - A Survey on Large Language Models for Code Generation [9.555952109820392]
大規模言語モデル(LLM)は、様々なコード関連のタスクで顕著な進歩を遂げています。
本調査は、総合的かつ最新の文献レビューを提供することで、学界と実践的発展のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-06-01T17:48:15Z) - Prompting Large Language Models to Tackle the Full Software Development Lifecycle: A Case Study [72.24266814625685]
DevEvalでソフトウェア開発ライフサイクル全体にわたって、大きな言語モデル(LLM)のパフォーマンスを調査します。
DevEvalは4つのプログラミング言語、複数のドメイン、高品質なデータ収集、各タスクに対して慎重に設計および検証されたメトリクスを備えている。
GPT-4を含む現在のLLMは、DevEvalで提示される課題を解決できないことが実証研究によって示されている。
論文 参考訳(メタデータ) (2024-03-13T15:13:44Z) - Copilot Evaluation Harness: Evaluating LLM-Guided Software Programming [12.355284125578342]
大規模言語モデル(LLM)は、現代のソフトウェア開発の焦点となっている。
LLMは、インテリジェントでチャット駆動のプログラミングアシスタントとして機能することで、開発者の生産性を大幅に向上する可能性がある。
しかし、それぞれのシステムは、最高のパフォーマンスを確保するために、LLMをそのワークスペースに向ける必要がある。
論文 参考訳(メタデータ) (2024-02-22T03:51:34Z) - DIALIGHT: Lightweight Multilingual Development and Evaluation of
Task-Oriented Dialogue Systems with Large Language Models [76.79929883963275]
DIALIGHTは多言語タスク指向対話(ToD)システムの開発と評価のためのツールキットである。
ローカル発話レベルとグローバル対話レベルの両方において、人間のきめ細かい評価のためのセキュアでユーザフレンドリーなWebインターフェースを備えている。
評価の結果, PLMの微調整により精度とコヒーレンスが向上する一方, LLMベースのシステムは多様で類似した応答を生成するのに優れていた。
論文 参考訳(メタデータ) (2024-01-04T11:27:48Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - A Case Study on Test Case Construction with Large Language Models:
Unveiling Practical Insights and Challenges [2.7029792239733914]
本稿では,ソフトウェア工学の文脈におけるテストケース構築における大規模言語モデルの適用について検討する。
定性分析と定量分析の混合により, LLMが試験ケースの包括性, 精度, 効率に与える影響を評価する。
論文 参考訳(メタデータ) (2023-12-19T20:59:02Z) - L2CEval: Evaluating Language-to-Code Generation Capabilities of Large
Language Models [102.00201523306986]
大規模言語モデル(LLM)の言語間コード生成能力を体系的に評価するL2CEvalを提案する。
モデルのサイズ、事前学習データ、命令チューニング、異なるプロンプトメソッドなど、それらのパフォーマンスに影響を与える可能性のある要因を分析する。
モデル性能の評価に加えて、モデルに対する信頼性校正を計測し、出力プログラムの人間による評価を行う。
論文 参考訳(メタデータ) (2023-09-29T17:57:00Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。