GISTEmbed: Guided In-sample Selection of Training Negatives for Text
Embedding Fine-tuning
- URL: http://arxiv.org/abs/2402.16829v1
- Date: Mon, 26 Feb 2024 18:55:15 GMT
- Title: GISTEmbed: Guided In-sample Selection of Training Negatives for Text
Embedding Fine-tuning
- Authors: Aivin V. Solatorio
- Abstract summary: GISTEmbed is a novel strategy that enhances in-batch negative selection during contrastive training through a guide model.
Benchmarked against the Massive Text Embedding Benchmark (MTEB), GISTEmbed showcases consistent performance improvements across various model sizes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Embedding models are integral to AI applications like semantic search,
personalized recommendations, and retrieval augmented generation for LLMs,
necessitating high-quality training data. However, the limited scalability of
manual data curation prompts the need for automated methods to ensure data
integrity. Traditional unsupervised triplet mining automates training data
generation, crucial for embedding model training, yet inadvertently injects
biases and noise, thereby degrading model performance. Addressing this, we
introduce GISTEmbed, a novel strategy that enhances in-batch negative selection
during contrastive training through a guide model. This approach departs from
reliance on random sampling and equal utility assumption of batch negatives,
significantly reducing noise from data quality issues and improving model
fine-tuning. Benchmarked against the Massive Text Embedding Benchmark (MTEB),
GISTEmbed showcases consistent performance improvements across various model
sizes and achieves state-of-the-art results in select categories. This
framework enables significant enhancements for smaller models by leveraging the
capabilities of powerful yet resource-intensive large models. GISTEmbed can
potentially revolutionize the creation of highly efficient, smaller models,
democratizing access to advanced AI technologies. Making these technologies
more accessible and cost-effective, especially for applications constrained by
resources, significantly expands the impact and accessibility of
state-of-the-art AI solutions across diverse sectors.
Related papers
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Unsupervised Data Validation Methods for Efficient Model Training [0.0]
State-of-the-art models in natural language processing (NLP), text-to-speech (TTS), speech-to-text (STT) and vision-language models (VLM) rely heavily on large datasets.
This research explores key areas such as defining "quality data," developing methods for generating appropriate data and enhancing accessibility to model training.
arXiv Detail & Related papers (2024-10-10T13:00:53Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Data Quality Aware Approaches for Addressing Model Drift of Semantic
Segmentation Models [1.6385815610837167]
This study investigates two prominent quality aware strategies to combat model drift.
The former leverages image quality assessment metrics to meticulously select high-quality training data, improving the model robustness.
The latter makes use of learned vectors feature from existing models to guide the selection of future data, aligning it with the model's prior knowledge.
arXiv Detail & Related papers (2024-02-11T18:01:52Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
We develop an efficient, autoregression-based vision model on a limited dataset.
We demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding.
Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint.
arXiv Detail & Related papers (2024-02-07T13:41:53Z) - Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
We consider a model-based reinforcement learning algorithm that infers the system dynamics from the available data and performs policy optimization on imaginary model rollouts.
This approach is vulnerable to exploiting model errors which can lead to catastrophic failures on the real system.
We show that better performance can be obtained with a single well-calibrated autoregressive model on the D4RL benchmark.
arXiv Detail & Related papers (2024-02-05T10:18:15Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - INGENIOUS: Using Informative Data Subsets for Efficient Pre-Training of
Language Models [40.54353850357839]
We show how we can employ submodular optimization to select highly representative subsets of the training corpora.
We show that the resulting models achieve up to $sim99%$ of the performance of the fully-trained models.
arXiv Detail & Related papers (2023-05-11T09:24:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.