Self-Consistent Conformal Prediction
- URL: http://arxiv.org/abs/2402.07307v2
- Date: Mon, 22 Apr 2024 04:15:10 GMT
- Title: Self-Consistent Conformal Prediction
- Authors: Lars van der Laan, Ahmed M. Alaa,
- Abstract summary: We introduce textitSelf-Consistent Conformal Prediction for regression.
We provide calibrated point predictions and compatible prediction intervals that are valid conditional on model predictions.
- Score: 16.606421967131524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In decision-making guided by machine learning, decision-makers may take identical actions in contexts with identical predicted outcomes. Conformal prediction helps decision-makers quantify uncertainty in point predictions of outcomes, allowing for better risk management for actions. Motivated by this perspective, we introduce \textit{Self-Consistent Conformal Prediction} for regression, which combines two post-hoc approaches -- Venn-Abers calibration and conformal prediction -- to provide calibrated point predictions and compatible prediction intervals that are valid conditional on model predictions. Our procedure can be applied post-hoc to any black-box model to provide predictions and inferences with finite-sample prediction-conditional guarantees. Numerical experiments show our approach strikes a balance between interval efficiency and conditional validity.
Related papers
- Relational Conformal Prediction for Correlated Time Series [56.59852921638328]
We propose a novel distribution-free approach based on conformal prediction framework and quantile regression.
We fill this void by introducing a novel conformal prediction method based on graph deep learning operators.
Our approach provides accurate coverage and archives state-of-the-art uncertainty quantification in relevant benchmarks.
arXiv Detail & Related papers (2025-02-13T16:12:17Z) - Generalized Venn and Venn-Abers Calibration with Applications in Conformal Prediction [0.0]
We introduce a unified framework for Venn-Abers calibration that extends Vovk's approach beyond binary classification.<n>Our method transforms any perfectly in-sample calibrated predictor into a set-valued predictor that, in finite samples, outputs at least one marginally point prediction.<n>For quantile loss, our framework recovers group-conditional and multicalibrated conformal prediction as special cases and yields novel prediction intervals with quantile-conditional coverage.
arXiv Detail & Related papers (2025-02-08T19:52:59Z) - Toward Conditional Distribution Calibration in Survival Prediction [6.868842871753991]
We propose a method based on conformal prediction that uses the model's predicted individual survival probability at that instance's observed time.
We provide theoretical guarantees for both marginal and conditional calibration and test it extensively across 15 diverse real-world datasets.
arXiv Detail & Related papers (2024-10-27T20:19:46Z) - Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
Conformal prediction provides model-agnostic and distribution-free uncertainty quantification.
Yet, conformal prediction is not reliable under poisoning attacks where adversaries manipulate both training and calibration data.
We propose reliable prediction sets (RPS): the first efficient method for constructing conformal prediction sets with provable reliability guarantees under poisoning.
arXiv Detail & Related papers (2024-10-13T15:37:11Z) - Split Conformal Prediction under Data Contamination [14.23965125128232]
We study the robustness of split conformal prediction in a data contamination setting.
We quantify the impact of corrupted data on the coverage and efficiency of the constructed sets.
We propose an adjustment in the classification setting which we call Contamination Robust Conformal Prediction.
arXiv Detail & Related papers (2024-07-10T14:33:28Z) - Does confidence calibration improve conformal prediction? [10.340903334800787]
We show that current confidence calibration methods lead to larger prediction sets in adaptive conformal prediction.
By investigating the role of temperature value, we observe that high-confidence predictions can enhance the efficiency of adaptive conformal prediction.
We propose Conformal Temperature Scaling (ConfTS), a variant of temperature scaling with a novel loss function designed to enhance the efficiency of prediction sets.
arXiv Detail & Related papers (2024-02-06T19:27:48Z) - Conformal Approach To Gaussian Process Surrogate Evaluation With
Coverage Guarantees [47.22930583160043]
We propose a method for building adaptive cross-conformal prediction intervals.
The resulting conformal prediction intervals exhibit a level of adaptivity akin to Bayesian credibility sets.
The potential applicability of the method is demonstrated in the context of surrogate modeling of an expensive-to-evaluate simulator of the clogging phenomenon in steam generators of nuclear reactors.
arXiv Detail & Related papers (2024-01-15T14:45:18Z) - Conditional validity of heteroskedastic conformal regression [12.905195278168506]
Conformal prediction and split conformal prediction offer a distribution-free approach to estimating prediction intervals with statistical guarantees.
Recent work has shown that split conformal prediction can produce state-of-the-art prediction intervals when focusing on marginal coverage.
This paper tries to shed new light on how prediction intervals can be constructed, using methods such as normalized and Mondrian conformal prediction.
arXiv Detail & Related papers (2023-09-15T11:10:46Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
We train an auxiliary model with a self-supervised pretext task on top of an existing predictive model and use the self-supervised error as an additional feature to estimate nonconformity scores.
We empirically demonstrate the benefit of the additional information using both synthetic and real data on the efficiency (width), deficit, and excess of conformal prediction intervals.
arXiv Detail & Related papers (2023-02-23T18:57:14Z) - Predictive Inference with Feature Conformal Prediction [80.77443423828315]
We propose feature conformal prediction, which extends the scope of conformal prediction to semantic feature spaces.
From a theoretical perspective, we demonstrate that feature conformal prediction provably outperforms regular conformal prediction under mild assumptions.
Our approach could be combined with not only vanilla conformal prediction, but also other adaptive conformal prediction methods.
arXiv Detail & Related papers (2022-10-01T02:57:37Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
We present a new method to correctly predict the uncertainty associated with the predicted distribution of future trajectories.
Our approach, CovariaceNet, is based on a Conditional Generative Model with Gaussian latent variables.
arXiv Detail & Related papers (2021-09-07T09:38:24Z) - Private Prediction Sets [72.75711776601973]
Machine learning systems need reliable uncertainty quantification and protection of individuals' privacy.
We present a framework that treats these two desiderata jointly.
We evaluate the method on large-scale computer vision datasets.
arXiv Detail & Related papers (2021-02-11T18:59:11Z) - Short-term prediction of Time Series based on bounding techniques [0.0]
This paper is reconsidered the prediction problem in time series framework by using a new non-parametric approach.
The innovation is to consider both deterministic and deterministic-stochastic assumptions in order to obtain the upper bound of the prediction error.
A benchmark is included to illustrate that the proposed predictor can obtain suitable results in a prediction scheme, and can be an interesting alternative method to the classical non-parametric methods.
arXiv Detail & Related papers (2021-01-26T11:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.