Re-DiffiNet: Modeling discrepancies in tumor segmentation using diffusion models
- URL: http://arxiv.org/abs/2402.07354v4
- Date: Wed, 10 Apr 2024 07:54:14 GMT
- Title: Re-DiffiNet: Modeling discrepancies in tumor segmentation using diffusion models
- Authors: Tianyi Ren, Abhishek Sharma, Juampablo Heras Rivera, Harshitha Rebala, Ethan Honey, Agamdeep Chopra, Jacob Ruzevick, Mehmet Kurt,
- Abstract summary: We introduce a framework called Re-Diffinet for modeling the discrepancy between the outputs of a segmentation model like U-Net and the ground truth.
The results show an average improvement of 0.55% in the Dice score and 16.28% in HD95 from cross-validation over 5-folds.
- Score: 1.7995110894203483
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identification of tumor margins is essential for surgical decision-making for glioblastoma patients and provides reliable assistance for neurosurgeons. Despite improvements in deep learning architectures for tumor segmentation over the years, creating a fully autonomous system suitable for clinical floors remains a formidable challenge because the model predictions have not yet reached the desired level of accuracy and generalizability for clinical applications. Generative modeling techniques have seen significant improvements in recent times. Specifically, Generative Adversarial Networks (GANs) and Denoising-diffusion-based models (DDPMs) have been used to generate higher-quality images with fewer artifacts and finer attributes. In this work, we introduce a framework called Re-Diffinet for modeling the discrepancy between the outputs of a segmentation model like U-Net and the ground truth, using DDPMs. By explicitly modeling the discrepancy, the results show an average improvement of 0.55\% in the Dice score and 16.28\% in HD95 from cross-validation over 5-folds, compared to the state-of-the-art U-Net segmentation model.
Related papers
- Efficient Brain Tumor Classification with Lightweight CNN Architecture: A Novel Approach [0.0]
Brain tumor classification using MRI images is critical in medical diagnostics, where early and accurate detection significantly impacts patient outcomes.
Recent advancements in deep learning (DL) have shown promise, but many models struggle with balancing accuracy and computational efficiency.
We propose a novel model architecture integrating separable convolutions and squeeze and excitation (SE) blocks, designed to enhance feature extraction while maintaining computational efficiency.
arXiv Detail & Related papers (2025-02-01T21:06:42Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Scaling by training on large datasets has been shown to enhance the quality and fidelity of image generation and manipulation with diffusion models.
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.
Our results demonstrate significant performance gains in various scenarios when combined with different fine-tuning schemes.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Early Diagnosis of Alzheimer's Diseases and Dementia from MRI Images Using an Ensemble Deep Learning [0.7510165488300369]
Alzheimer's Disease (AD) is a progressive neurological disorder that can result in significant cognitive impairment and dementia.
In this study, we proposed two CNNs, IR-BRAINNET and Modified-DEMNET, designed to detect the early stages of AD accurately.
We also introduced an ensemble model that averages their outputs to reduce variance across the CNNs and enhance AD detection.
arXiv Detail & Related papers (2024-12-07T14:27:41Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Dimensionality Reduction and Nearest Neighbors for Improving Out-of-Distribution Detection in Medical Image Segmentation [1.2873975765521795]
This work applied the Mahalanobis distance (MD) post hoc to the bottleneck features of four Swin UNETR and nnU-net models that segmented the liver.
Images the models failed on were detected with high performance and minimal computational load.
arXiv Detail & Related papers (2024-08-05T18:24:48Z) - Guided Reconstruction with Conditioned Diffusion Models for Unsupervised Anomaly Detection in Brain MRIs [35.46541584018842]
Unsupervised Anomaly Detection (UAD) aims to identify any anomaly as an outlier from a healthy training distribution.
generative models are used to learn the reconstruction of healthy brain anatomy for a given input image.
We propose conditioning the denoising process of diffusion models with additional information derived from a latent representation of the input image.
arXiv Detail & Related papers (2023-12-07T11:03:42Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
3D delineation of anatomical structures is a cardinal goal in medical imaging analysis.
Prior to deep learning, statistical shape models that imposed anatomical constraints and produced high quality surfaces were a core technology.
We present deep implicit statistical shape models (DISSMs), a new approach to delineation that marries the representation power of CNNs with the robustness of SSMs.
arXiv Detail & Related papers (2021-04-07T01:15:06Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Spherical coordinates transformation pre-processing in Deep Convolution
Neural Networks for brain tumor segmentation in MRI [0.0]
Deep Convolutional Neural Networks (DCNN) have recently shown very promising results.
DCNN models need large annotated datasets to achieve good performance.
In this work, a 3D Spherical coordinates transform has been hypothesized to improve DCNN models' accuracy.
arXiv Detail & Related papers (2020-08-17T05:11:05Z) - Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain
MRI [47.26574993639482]
We show improved anomaly segmentation performance and the general capability to obtain much more crisp reconstructions of input data at native resolution.
The modeling of the laplacian pyramid further enables the delineation and aggregation of lesions at multiple scales.
arXiv Detail & Related papers (2020-06-23T09:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.