Conditional Generative Models are Sufficient to Sample from Any Causal
Effect Estimand
- URL: http://arxiv.org/abs/2402.07419v1
- Date: Mon, 12 Feb 2024 05:48:31 GMT
- Title: Conditional Generative Models are Sufficient to Sample from Any Causal
Effect Estimand
- Authors: Md Musfiqur Rahman, Matt Jordan, Murat Kocaoglu
- Abstract summary: Causal inference from observational data has recently found many applications in machine learning.
We show that any identifiable causal effect given an arbitrary causal graph can be computed through push-forward computations of conditional generative models.
- Score: 10.63305607432576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal inference from observational data has recently found many applications
in machine learning. While sound and complete algorithms exist to compute
causal effects, many of these algorithms require explicit access to conditional
likelihoods over the observational distribution, which is difficult to estimate
in the high-dimensional regime, such as with images. To alleviate this issue,
researchers have approached the problem by simulating causal relations with
neural models and obtained impressive results. However, none of these existing
approaches can be applied to generic scenarios such as causal graphs on image
data with latent confounders, or obtain conditional interventional samples. In
this paper, we show that any identifiable causal effect given an arbitrary
causal graph can be computed through push-forward computations of conditional
generative models. Based on this result, we devise a diffusion-based approach
to sample from any (conditional) interventional distribution on image data. To
showcase our algorithm's performance, we conduct experiments on a Colored MNIST
dataset having both the treatment ($X$) and the target variables ($Y$) as
images and obtain interventional samples from $P(y|do(x))$. As an application
of our algorithm, we evaluate two large conditional generative models that are
pre-trained on the CelebA dataset by analyzing the strength of spurious
correlations and the level of disentanglement they achieve.
Related papers
- Leveraging Text-to-Image Generation for Handling Spurious Correlation [24.940576844328408]
Deep neural networks trained with Empirical Risk Minimization (ERM) perform well when both training and test data come from the same domain.
ERM models may rely on spurious correlations that often exist between labels and irrelevant features of images, making predictions unreliable when those features do not exist.
We propose a technique to generate training samples with text-to-image (T2I) diffusion models for addressing the spurious correlation problem.
arXiv Detail & Related papers (2025-03-21T15:28:22Z) - Spatial Reasoning with Denoising Models [49.83744014336816]
We introduce a framework to perform reasoning over sets of continuous variables via denoising generative models.<n>For the first time, that order of generation can successfully be predicted by the denoising network itself.<n>Using these findings, we can increase the accuracy of specific reasoning tasks from 1% to >50%.
arXiv Detail & Related papers (2025-02-28T14:08:30Z) - Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - Sample, estimate, aggregate: A recipe for causal discovery foundation models [28.116832159265964]
Causal discovery has the potential to uncover mechanistic insights from biological experiments.
We propose a supervised model trained on large-scale, synthetic data to predict causal graphs.
Our approach is enabled by the observation that typical errors in the outputs of a discovery algorithm remain comparable across datasets.
arXiv Detail & Related papers (2024-02-02T21:57:58Z) - Diffusion Random Feature Model [0.0]
We present a diffusion model-inspired deep random feature model that is interpretable.
We derive generalization bounds between the distribution of sampled data and the true distribution using properties of score matching.
We validate our findings by generating samples on the fashion MNIST dataset and instrumental audio data.
arXiv Detail & Related papers (2023-10-06T17:59:05Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Diffusion Causal Models for Counterfactual Estimation [18.438307666925425]
We consider the task of counterfactual estimation from observational imaging data given a known causal structure.
We propose Diff-SCM, a deep structural causal model that builds on recent advances of generative energy-based models.
We find that Diff-SCM produces more realistic and minimal counterfactuals than baselines on MNIST data and can also be applied to ImageNet data.
arXiv Detail & Related papers (2022-02-21T12:23:01Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Harmonization with Flow-based Causal Inference [12.739380441313022]
This paper presents a normalizing-flow-based method to perform counterfactual inference upon a structural causal model (SCM) to harmonize medical data.
We evaluate on multiple, large, real-world medical datasets to observe that this method leads to better cross-domain generalization compared to state-of-the-art algorithms.
arXiv Detail & Related papers (2021-06-12T19:57:35Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z) - Information-Theoretic Approximation to Causal Models [0.0]
We show that it is possible to solve the problem of inferring the causal direction and causal effect between two random variables from a finite sample.
We embed distributions that originate from samples of X and Y into a higher dimensional probability space.
We show that this information-theoretic approximation to causal models (IACM) can be done by solving a linear optimization problem.
arXiv Detail & Related papers (2020-07-29T18:34:58Z) - A Causal Direction Test for Heterogeneous Populations [10.653162005300608]
Most causal models assume a single homogeneous population, an assumption that may fail to hold in many applications.
We show that when the homogeneity assumption is violated, causal models developed based on such assumption can fail to identify the correct causal direction.
We propose an adjustment to a commonly used causal direction test statistic by using a $k$-means type clustering algorithm.
arXiv Detail & Related papers (2020-06-08T18:59:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.