Piecewise Polynomial Tensor Network Quantum Feature Encoding
- URL: http://arxiv.org/abs/2402.07671v5
- Date: Thu, 02 Jan 2025 20:05:54 GMT
- Title: Piecewise Polynomial Tensor Network Quantum Feature Encoding
- Authors: Mazen Ali, Matthias Kabel,
- Abstract summary: This work introduces a novel method for embedding continuous variables into quantum circuits via piecewise features.<n>Our approach, termed Polynomial Network Quantum Feature TNQFE, aims to broaden the applicability of quantum algorithms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work introduces a novel method for embedding continuous variables into quantum circuits via piecewise polynomial features, utilizing low-rank tensor networks. Our approach, termed Piecewise Polynomial Tensor Network Quantum Feature Encoding (PPTNQFE), aims to broaden the applicability of quantum algorithms by incorporating spatially localized representations suited for numerical applications like partial differential equations and function regression. We demonstrate the potential of PPTNQFE through efficient point evaluations of solutions of discretized differential equations and in modeling functions with localized features such as jump discontinuities. While promising, challenges such as unexplored noise impact and design of trainable circuits remain. This study opens new avenues for enhancing quantum models with novel feature embeddings and leveraging TN representations for a wider array of function types in quantum machine learning.
Related papers
- PolyQROM: Orthogonal-Polynomial-Based Quantum Reduced-Order Model for Flow Field Analysis [5.588958112139646]
Quantum computing promises exponential acceleration for fluid flow simulations.
measurement overhead required to extract flow features from quantum-encoded flow field data undermines this advantage.
arXiv Detail & Related papers (2025-04-30T12:14:08Z) - The Impact of Architecture and Cost Function on Dissipative Quantum Neural Networks [0.016385815610837167]
We present a novel architecture for dissipative quantum neural networks (DQNNs) in which each building block can implement any quantum channel.
We derive a versatile one-to-one parametrization of isometries, allowing for an efficient implementation of the proposed structure.
arXiv Detail & Related papers (2025-02-13T17:38:48Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Circuit-Efficient Qubit-Excitation-based Variational Quantum Eigensolver [7.865137519552981]
We present a circuit-efficient implementation of two-body Qubit-Excitation-Based (QEB) operator for building shallow-circuit wave function Ansatze.
This work shows great promise for quantum simulations of electronic structures, leading to improved performance on current quantum hardware.
arXiv Detail & Related papers (2024-06-17T16:16:20Z) - Enhancing the expressivity of quantum neural networks with residual
connections [0.0]
We propose a quantum circuit-based algorithm to implement quantum residual neural networks (QResNets)
Our work lays the foundation for a complete quantum implementation of the classical residual neural networks.
arXiv Detail & Related papers (2024-01-29T04:00:51Z) - Non-asymptotic Approximation Error Bounds of Parameterized Quantum Circuits [16.460585387762478]
ized quantum circuits (PQCs) have emerged as a promising approach for quantum neural networks.
This paper investigates the expressivity of PQCs for approximating general function classes.
We establish the first non-asymptotic approximation error bounds for these functions in terms of the number of qubits, quantum circuit depth, and number of trainable parameters.
arXiv Detail & Related papers (2023-10-11T14:29:11Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Power and limitations of single-qubit native quantum neural networks [5.526775342940154]
Quantum neural networks (QNNs) have emerged as a leading strategy to establish applications in machine learning, chemistry, and optimization.
We formulate a theoretical framework for the expressive ability of data re-uploading quantum neural networks.
arXiv Detail & Related papers (2022-05-16T17:58:27Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z) - Recurrent Quantum Neural Networks [7.6146285961466]
Recurrent neural networks are the foundation of many sequence-to-sequence models in machine learning.
We construct a quantum recurrent neural network (QRNN) with demonstrable performance on non-trivial tasks.
We evaluate the QRNN on MNIST classification, both by feeding the QRNN each image pixel-by-pixel; and by utilising modern data augmentation as preprocessing step.
arXiv Detail & Related papers (2020-06-25T17:59:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.