Recurrent Quantum Neural Networks
- URL: http://arxiv.org/abs/2006.14619v1
- Date: Thu, 25 Jun 2020 17:59:44 GMT
- Title: Recurrent Quantum Neural Networks
- Authors: Johannes Bausch
- Abstract summary: Recurrent neural networks are the foundation of many sequence-to-sequence models in machine learning.
We construct a quantum recurrent neural network (QRNN) with demonstrable performance on non-trivial tasks.
We evaluate the QRNN on MNIST classification, both by feeding the QRNN each image pixel-by-pixel; and by utilising modern data augmentation as preprocessing step.
- Score: 7.6146285961466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recurrent neural networks are the foundation of many sequence-to-sequence
models in machine learning, such as machine translation and speech synthesis.
In contrast, applied quantum computing is in its infancy. Nevertheless there
already exist quantum machine learning models such as variational quantum
eigensolvers which have been used successfully e.g. in the context of energy
minimization tasks. In this work we construct a quantum recurrent neural
network (QRNN) with demonstrable performance on non-trivial tasks such as
sequence learning and integer digit classification. The QRNN cell is built from
parametrized quantum neurons, which, in conjunction with amplitude
amplification, create a nonlinear activation of polynomials of its inputs and
cell state, and allow the extraction of a probability distribution over
predicted classes at each step. To study the model's performance, we provide an
implementation in pytorch, which allows the relatively efficient optimization
of parametrized quantum circuits with thousands of parameters. We establish a
QRNN training setup by benchmarking optimization hyperparameters, and analyse
suitable network topologies for simple memorisation and sequence prediction
tasks from Elman's seminal paper (1990) on temporal structure learning. We then
proceed to evaluate the QRNN on MNIST classification, both by feeding the QRNN
each image pixel-by-pixel; and by utilising modern data augmentation as
preprocessing step. Finally, we analyse to what extent the unitary nature of
the network counteracts the vanishing gradient problem that plagues many
existing quantum classifiers and classical RNNs.
Related papers
- Multi-Scale Feature Fusion Quantum Depthwise Convolutional Neural Networks for Text Classification [3.0079490585515343]
We propose a novel quantum neural network (QNN) model based on quantum convolution.
We develop the quantum depthwise convolution that significantly reduces the number of parameters and lowers computational complexity.
We also introduce the multi-scale feature fusion mechanism to enhance model performance by integrating word-level and sentence-level features.
arXiv Detail & Related papers (2024-05-22T10:19:34Z) - Enhancing the expressivity of quantum neural networks with residual
connections [0.0]
We propose a quantum circuit-based algorithm to implement quantum residual neural networks (QResNets)
Our work lays the foundation for a complete quantum implementation of the classical residual neural networks.
arXiv Detail & Related papers (2024-01-29T04:00:51Z) - Variational Quantum Neural Networks (VQNNS) in Image Classification [0.0]
This paper investigates how training of quantum neural network (QNNs) can be done using quantum optimization algorithms.
In this paper, a QNN structure is made where a variational parameterized circuit is incorporated as an input layer named as Variational Quantum Neural Network (VQNNs)
VQNNs is experimented with MNIST digit recognition (less complex) and crack image classification datasets which converge the computation in lesser time than QNN with decent training accuracy.
arXiv Detail & Related papers (2023-03-10T11:24:32Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Reservoir Computing via Quantum Recurrent Neural Networks [0.5999777817331317]
Existing VQC or QNN-based methods require significant computational resources to perform gradient-based optimization of quantum circuit parameters.
In this work, we approach sequential modeling by applying a reservoir computing (RC) framework to quantum recurrent neural networks (QRNN-RC)
Our numerical simulations show that the QRNN-RC can reach results comparable to fully trained QRNN models for several function approximation and time series tasks.
arXiv Detail & Related papers (2022-11-04T17:30:46Z) - Cluster-Promoting Quantization with Bit-Drop for Minimizing Network
Quantization Loss [61.26793005355441]
Cluster-Promoting Quantization (CPQ) finds the optimal quantization grids for neural networks.
DropBits is a new bit-drop technique that revises the standard dropout regularization to randomly drop bits instead of neurons.
We experimentally validate our method on various benchmark datasets and network architectures.
arXiv Detail & Related papers (2021-09-05T15:15:07Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - Branching Quantum Convolutional Neural Networks [0.0]
Small-scale quantum computers are already showing potential gains in learning tasks on large quantum and very large classical data sets.
We present a generalization of QCNN, the branching quantum convolutional neural network, or bQCNN, with substantially higher expressibility.
arXiv Detail & Related papers (2020-12-28T19:00:03Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
arXiv Detail & Related papers (2020-11-12T08:32:04Z) - Decentralizing Feature Extraction with Quantum Convolutional Neural
Network for Automatic Speech Recognition [101.69873988328808]
We build upon a quantum convolutional neural network (QCNN) composed of a quantum circuit encoder for feature extraction.
An input speech is first up-streamed to a quantum computing server to extract Mel-spectrogram.
The corresponding convolutional features are encoded using a quantum circuit algorithm with random parameters.
The encoded features are then down-streamed to the local RNN model for the final recognition.
arXiv Detail & Related papers (2020-10-26T03:36:01Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.