論文の概要: Had enough of experts? Quantitative knowledge retrieval from large language models
- arxiv url: http://arxiv.org/abs/2402.07770v2
- Date: Thu, 06 Feb 2025 12:52:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 17:43:51.740754
- Title: Had enough of experts? Quantitative knowledge retrieval from large language models
- Title(参考訳): 専門家は十分であったか? : 大規模言語モデルからの定量的知識検索
- Authors: David Selby, Kai Spriestersbach, Yuichiro Iwashita, Mohammad Saad, Dennis Bappert, Archana Warrier, Sumantrak Mukherjee, Koichi Kise, Sebastian Vollmer,
- Abstract要約: 大規模言語モデル(LLM)は、説得力のある自然言語配列を生成する能力について広く研究されている。
我々は、専門家のような事前知識を抽出し、欠落したデータを出力することで、LLMを活用してベイズモデルを強化するフレームワークを導入する。
- 参考スコア(独自算出の注目度): 4.091195951668217
- License:
- Abstract: Large language models (LLMs) have been extensively studied for their abilities to generate convincing natural language sequences, however their utility for quantitative information retrieval is less well understood. Here we explore the feasibility of LLMs as a mechanism for quantitative knowledge retrieval to aid two data analysis tasks: elicitation of prior distributions for Bayesian models and imputation of missing data. We introduce a framework that leverages LLMs to enhance Bayesian workflows by eliciting expert-like prior knowledge and imputing missing data. Tested on diverse datasets, this approach can improve predictive accuracy and reduce data requirements, offering significant potential in healthcare, environmental science and engineering applications. We discuss the implications and challenges of treating LLMs as 'experts'.
- Abstract(参考訳): 大規模言語モデル (LLM) は, 説得力のある自然言語配列を生成する能力について広く研究されてきたが, 定量的情報検索にはあまり有用ではない。
本稿では, ベイズモデルに対する事前分布の導出と, 欠落データの計算という2つのデータ解析作業を支援するための, 定量的知識検索のメカニズムとしてのLLMの実現可能性について検討する。
我々は、専門家のような事前知識を抽出し、欠落したデータを出力することで、LLMを活用してベイジアンワークフローを強化するフレームワークを導入する。
多様なデータセットに基づいてテストされたこのアプローチは、予測精度の向上とデータ要求の削減を可能にし、医療、環境科学、エンジニアリングアプリケーションにおいて大きな可能性を秘めている。
LLMを「専門家」として扱うことの意味と課題について論じる。
関連論文リスト
- Evaluating the Performance of Large Language Models in Scientific Claim Detection and Classification [0.0]
本研究では,Twitterのようなプラットフォーム上での誤情報を緩和する革新的な手法として,LLM(Large Language Models)の有効性を評価する。
LLMは、従来の機械学習モデルに関連する広範なトレーニングと過度に適合する問題を回避し、事前訓練された適応可能なアプローチを提供する。
特定データセットを用いたLCMの性能の比較分析を行い、公衆衛生コミュニケーションへの応用のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-21T05:02:26Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Leveraging Large Language Models for Web Scraping [0.0]
本研究では,言語生成用に設計したRAGモデルに対して,汎用的な高精度なデータスクレイピング手法について検討する。
よりモジュール的で解釈可能な方法で知識をキャプチャするために、私たちは、潜在的な知識検索機能を備えた事前訓練された言語モデルを使用します。
論文 参考訳(メタデータ) (2024-06-12T14:15:15Z) - CLAIM Your Data: Enhancing Imputation Accuracy with Contextual Large Language Models [0.18416014644193068]
本稿では,精度インプット法(CLAIM)の文脈言語モデルを提案する。
従来の計算法とは異なり、CLAIMは文脈に関連のある自然言語記述子を使用して、欠落した値を埋める。
多様なデータセットや欠落パターンに対する評価は,既存の計算手法よりもCLAIMの方が優れた性能を示している。
論文 参考訳(メタデータ) (2024-05-28T00:08:29Z) - LLM Processes: Numerical Predictive Distributions Conditioned on Natural Language [35.84181171987974]
我々のゴールは、数値データを処理し、任意の場所で確率的予測を行うレグレッションモデルを構築することである。
まず、大規模言語モデルから明示的で一貫性のある数値予測分布を抽出する戦略を探求する。
本研究では,テキストを数値予測に組み込む能力を示し,予測性能を改善し,定性的な記述を反映した定量的な構造を与える。
論文 参考訳(メタデータ) (2024-05-21T15:13:12Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Large Language Models as Data Preprocessors [9.99065004972981]
大規模言語モデル (LLM) は人工知能において大きな進歩を遂げている。
本研究では、データマイニングおよび分析アプリケーションにおいて重要な段階である、データ前処理におけるその可能性について検討する。
我々は,最先端のプロンプトエンジニアリング技術を統合したデータ前処理のためのLLMベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-30T23:28:43Z) - ExpeL: LLM Agents Are Experiential Learners [57.13685954854463]
実験学習エージェント(ExpeL)を導入し、パラメトリック更新を必要とせずにエージェント体験から学習できるようにする。
我々のエージェントは、経験を自律的に収集し、学習課題の集合から自然言語を用いて知識を抽出する。
推論において、エージェントは抽出された洞察と過去の経験をリコールし、情報的決定を行う。
論文 参考訳(メタデータ) (2023-08-20T03:03:34Z) - Thrust: Adaptively Propels Large Language Models with External Knowledge [58.72867916604562]
大規模事前学習言語モデル(PTLM)は、モデルパラメータの豊富な知識を符号化する。
PTLMの固有の知識は不透明または静的であり、外部の知識を必要とする。
本稿では,外部知識のインスタンスレベル適応推進(IAPEK)を提案する。
論文 参考訳(メタデータ) (2023-07-19T20:16:46Z) - LLMs for Knowledge Graph Construction and Reasoning: Recent Capabilities and Future Opportunities [66.36633042421387]
知識グラフ(KG)の構築と推論のための大規模言語モデル(LLM)の評価。
我々は,LLMと外部ソースを用いたマルチエージェントベースのアプローチであるAutoKGを提案し,KGの構築と推論を行う。
論文 参考訳(メタデータ) (2023-05-22T15:56:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。