CycPUF: Cyclic Physical Unclonable Function
- URL: http://arxiv.org/abs/2402.08084v1
- Date: Mon, 12 Feb 2024 22:04:04 GMT
- Title: CycPUF: Cyclic Physical Unclonable Function
- Authors: Michael Dominguez, Amin Rezaei,
- Abstract summary: We introduce feedback signals into traditional delay-based PUF designs to give them a wider range of possible output behaviors.
Based on our analysis, cyclic PUFs produce responses that can be binary, steady-state, oscillating, or pseudo-random under fixed challenges.
The security gain of the proposed cyclic PUFs is also shown against state-of-the-art attacks.
- Score: 1.104960878651584
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physical Unclonable Functions (PUFs) leverage manufacturing process imperfections that cause propagation delay discrepancies for the signals traveling along these paths. While PUFs can be used for device authentication and chip-specific key generation, strong PUFs have been shown to be vulnerable to machine learning modeling attacks. Although there is an impression that combinational circuits must be designed without any loops, cyclic combinational circuits have been shown to increase design security against hardware intellectual property theft. In this paper, we introduce feedback signals into traditional delay-based PUF designs such as arbiter PUF, ring oscillator PUF, and butterfly PUF to give them a wider range of possible output behaviors and thus an edge against modeling attacks. Based on our analysis, cyclic PUFs produce responses that can be binary, steady-state, oscillating, or pseudo-random under fixed challenges. The proposed cyclic PUFs are implemented in field programmable gate arrays, and their power and area overhead, in addition to functional metrics, are reported compared with their traditional counterparts. The security gain of the proposed cyclic PUFs is also shown against state-of-the-art attacks.
Related papers
- Reflecting on the State of Rehearsal-free Continual Learning with Pretrained Models [63.11967672725459]
We show how P-RFCL techniques can be matched by a simple and lightweight PEFT baseline.
We show how most often, P-RFCL techniques can be matched by a simple and lightweight PEFT baseline.
arXiv Detail & Related papers (2024-06-13T17:57:10Z) - Existential Unforgeability in Quantum Authentication From Quantum Physical Unclonable Functions Based on Random von Neumann Measurement [45.386403865847235]
Physical Unclonable Functions (PUFs) leverage inherent, non-clonable physical randomness to generate unique input-output pairs.
Quantum PUFs (QPUFs) extend this concept by using quantum states as input-output pairs.
We show that random unitary QPUFs cannot achieve existential unforgeability against Quantum Polynomial Time adversaries.
We introduce a second model where the QPUF functions as a nonunitary quantum channel, which guarantees existential unforgeability.
arXiv Detail & Related papers (2024-04-17T12:16:41Z) - Designing a Photonic Physically Unclonable Function Having Resilience to Machine Learning Attacks [2.369276238599885]
We describe a computational PUF model for producing datasets required for training machine learning (ML) attacks.
We find that the modeled PUF generates distributions that resemble uniform white noise.
Preliminary analysis suggests that the PUF exhibits similar resilience to generative adversarial networks.
arXiv Detail & Related papers (2024-04-03T03:58:21Z) - PhenoAuth: A Novel PUF-Phenotype-based Authentication Protocol for IoT Devices [9.608432807038083]
This work proposes a full noise-tolerant authentication protocol based on the PUF Phenotype concept.
It demonstrates mutual authentication and forward secrecy in a setting suitable for device-to-device communication.
arXiv Detail & Related papers (2024-03-06T06:04:32Z) - Attacking Delay-based PUFs with Minimal Adversary Model [13.714598539443513]
Physically Unclonable Functions (PUFs) provide a streamlined solution for lightweight device authentication.
Delay-based Arbiter PUFs, with their ease of implementation and vast challenge space, have received significant attention.
Research is polarized between developing modelling-resistant PUFs and devising machine learning attacks against them.
arXiv Detail & Related papers (2024-03-01T11:35:39Z) - Robust Control for Dynamical Systems With Non-Gaussian Noise via Formal
Abstractions [59.605246463200736]
We present a novel controller synthesis method that does not rely on any explicit representation of the noise distributions.
First, we abstract the continuous control system into a finite-state model that captures noise by probabilistic transitions between discrete states.
We use state-of-the-art verification techniques to provide guarantees on the interval Markov decision process and compute a controller for which these guarantees carry over to the original control system.
arXiv Detail & Related papers (2023-01-04T10:40:30Z) - Learning Classical Readout Quantum PUFs based on single-qubit gates [9.669942356088377]
We formalize the class of Classical Readout Quantum PUFs (CR-QPUFs) using the statistical query (SQ) model.
We show insufficient security for CR-QPUFs based on singlebit rotation gates, when adversary has SQ access to the CR-QPUF.
We demonstrate how a malicious party can learn CR-QPUF characteristics and forge the signature of a quantum device.
arXiv Detail & Related papers (2021-12-13T13:29:22Z) - Adaptive Fourier Neural Operators: Efficient Token Mixers for
Transformers [55.90468016961356]
We propose an efficient token mixer that learns to mix in the Fourier domain.
AFNO is based on a principled foundation of operator learning.
It can handle a sequence size of 65k and outperforms other efficient self-attention mechanisms.
arXiv Detail & Related papers (2021-11-24T05:44:31Z) - Quantum Lock: A Provable Quantum Communication Advantage [2.9562795446317964]
This paper proposes a generic design of provably secure PUFs, called hybrid locked PUFs(HLPUFs)
An HLPUF uses a classical PUF, and encodes the output into non-orthogonal quantum states to hide the outcomes of the underlying CPUF from any adversary.
We show that by exploiting non-classical properties of quantum states, the HLPUF allows the server to reuse the challenge-response pairs for further client authentication.
arXiv Detail & Related papers (2021-10-18T17:01:46Z) - Quality of Service Guarantees for Physical Unclonable Functions [90.99207266853986]
noisy physical unclonable function (PUF) outputs facilitate reliable, secure, and private key agreement.
We introduce a quality of service parameter to control the percentage of PUF outputs for which a target reliability level can be guaranteed.
arXiv Detail & Related papers (2021-07-12T18:26:08Z) - Modular Deep Reinforcement Learning for Continuous Motion Planning with
Temporal Logic [59.94347858883343]
This paper investigates the motion planning of autonomous dynamical systems modeled by Markov decision processes (MDP)
The novelty is to design an embedded product MDP (EP-MDP) between the LDGBA and the MDP.
The proposed LDGBA-based reward shaping and discounting schemes for the model-free reinforcement learning (RL) only depend on the EP-MDP states.
arXiv Detail & Related papers (2021-02-24T01:11:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.