論文の概要: Text-centric Alignment for Multi-Modality Learning
- arxiv url: http://arxiv.org/abs/2402.08086v2
- Date: Mon, 20 May 2024 19:18:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 18:31:52.037134
- Title: Text-centric Alignment for Multi-Modality Learning
- Title(参考訳): マルチモーダル学習のためのテキスト中心アライメント
- Authors: Yun-Da Tsai, Ting-Yu Yen, Pei-Fu Guo, Zhe-Yan Li, Shou-De Lin,
- Abstract要約: マルチモーダル学習のためのテキスト中心アライメント(TAMML)を提案する。
テキストのユニークな性質を統一意味空間として活用することにより、TAMMLは目に見えない、多様性があり、予測不可能なモダリティの組み合わせを扱う上で、大幅な改善を示す。
本研究は,モダリティの可用性が動的で不確実な実世界のアプリケーションに対して,フレキシブルで効果的なソリューションを提供することによって,この分野に寄与する。
- 参考スコア(独自算出の注目度): 3.6961400222746748
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research paper addresses the challenge of modality mismatch in multimodal learning, where the modalities available during inference differ from those available at training. We propose the Text-centric Alignment for Multi-Modality Learning (TAMML) approach, an innovative method that utilizes Large Language Models (LLMs) with in-context learning and foundation models to enhance the generalizability of multimodal systems under these conditions. By leveraging the unique properties of text as a unified semantic space, TAMML demonstrates significant improvements in handling unseen, diverse, and unpredictable modality combinations. TAMML not only adapts to varying modalities but also maintains robust performance, showcasing the potential of foundation models in overcoming the limitations of traditional fixed-modality frameworks in embedding representations. This study contributes to the field by offering a flexible, effective solution for real-world applications where modality availability is dynamic and uncertain.
- Abstract(参考訳): 本研究では,マルチモーダル学習におけるモダリティミスマッチの課題について考察する。
テキスト中心アライメント・フォー・マルチモーダル・ラーニング(TAMML)アプローチは,Large Language Models(LLM)とインコンテキスト・ラーニングと基礎モデルを用いて,これらの条件下でのマルチモーダルシステムの一般化性を高める手法である。
テキストのユニークな性質を統一意味空間として活用することにより、TAMMLは目に見えない、多様性があり、予測不可能なモダリティの組み合わせを扱う上で、大幅な改善を示す。
TAMMLは様々なモダリティに適応するだけでなく、堅牢なパフォーマンスも維持し、埋め込み表現における従来の固定モードフレームワークの限界を克服する基礎モデルの可能性を示している。
本研究は,モダリティの可用性が動的で不確実な実世界のアプリケーションに対して,フレキシブルで効果的なソリューションを提供することによって,この分野に寄与する。
関連論文リスト
- Unified Generative and Discriminative Training for Multi-modal Large Language Models [88.84491005030316]
生成的トレーニングにより、視覚言語モデル(VLM)は様々な複雑なタスクに取り組むことができる。
CLIPのようなモデルで実証された差別的トレーニングは、ゼロショットイメージテキストの分類と検索に優れています。
本稿では,両パラダイムの強みを統合する統一的アプローチを提案する。
論文 参考訳(メタデータ) (2024-11-01T01:51:31Z) - LLMs Can Evolve Continually on Modality for X-Modal Reasoning [62.2874638875554]
既存の手法は、モーダル固有の事前訓練とジョイント・モーダルチューニングに大きく依存しており、新しいモーダルへと拡張する際の計算上の負担が大きくなった。
PathWeaveは、Modal-Path sWitchingとExpAnsion機能を備えた柔軟でスケーラブルなフレームワークである。
PathWeaveは最先端のMLLMと互換性があり、パラメータトレーニングの負担を98.73%削減する。
論文 参考訳(メタデータ) (2024-10-26T13:19:57Z) - Enhance Modality Robustness in Text-Centric Multimodal Alignment with Adversarial Prompting [4.985886792128721]
本研究では, 雑音不完全, 動的入力順序順順, モダリティの欠如に対して, マルチモーダル表現の品質とロバスト性を評価する。
本稿では,従来の頑健なトレーニング手法や事前学習されたマルチモーダル基礎モデルと比較して,頑健さを著しく向上させる新しいテキスト中心の対角訓練手法を提案する。
論文 参考訳(メタデータ) (2024-08-19T08:44:55Z) - Missing Modality Prediction for Unpaired Multimodal Learning via Joint Embedding of Unimodal Models [6.610033827647869]
実世界のシナリオでは、完全なマルチモーダルデータを一貫して取得することは重大な課題である。
これはしばしば、特定のモダリティのデータが欠落しているモダリティの問題につながる。
自己教師型共同埋め込み学習手法を用いて, パラメータ効率のよい未学習モデルの微調整を行う新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-17T14:44:25Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
本稿では,既存のMLLMのモデル構成による新しいパラダイムを提案する。
我々の基本的な実装であるNaiveMCは、モダリティエンコーダを再利用し、LLMパラメータをマージすることで、このパラダイムの有効性を実証する。
論文 参考訳(メタデータ) (2024-02-20T06:38:10Z) - Toward Robust Multimodal Learning using Multimodal Foundational Models [30.755818450393637]
マルチモーダル基礎モデルを用いたロバストなマルチモーダル学習に向けたTRMLを提案する。
TRMLは、欠落したモダリティを置き換えるために生成された仮想モダリティを使用する。
またセマンティックマッチング学習モジュールを設計し、セマンティック空間の生成とモダリティの欠如を協調する。
論文 参考訳(メタデータ) (2024-01-20T04:46:43Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
教師なしの事前訓練は骨格に基づく行動理解において大きな成功を収めた。
我々はUmURLと呼ばれる統一マルチモーダル非教師なし表現学習フレームワークを提案する。
UmURLは効率的な早期融合戦略を利用して、マルチモーダル機能を単一ストリームで共同でエンコードする。
論文 参考訳(メタデータ) (2023-11-06T13:56:57Z) - Learning Unseen Modality Interaction [54.23533023883659]
マルチモーダル学習は、すべてのモダリティの組み合わせが訓練中に利用でき、クロスモーダル対応を学ぶことを前提としている。
我々は、目に見えないモダリティ相互作用の問題を提起し、第1の解を導入する。
異なるモジュラリティの多次元的特徴を、豊富な情報を保存した共通空間に投影するモジュールを利用する。
論文 参考訳(メタデータ) (2023-06-22T10:53:10Z) - Robust Latent Representations via Cross-Modal Translation and Alignment [36.67937514793215]
ほとんどのマルチモーダル機械学習手法では、トレーニングに使用されるすべてのモダリティをテストに利用する必要がある。
この制限に対処するため、トレーニング中のみに複数のモーダルを用いてユニモーダルシステムのテスト性能を向上させることを目的としている。
提案するマルチモーダルトレーニングフレームワークは、クロスモーダル変換と相関に基づく潜在空間アライメントを用いる。
論文 参考訳(メタデータ) (2020-11-03T11:18:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。