Group Decision-Making among Privacy-Aware Agents
- URL: http://arxiv.org/abs/2402.08156v4
- Date: Thu, 11 Apr 2024 14:59:39 GMT
- Title: Group Decision-Making among Privacy-Aware Agents
- Authors: Marios Papachristou, M. Amin Rahimian,
- Abstract summary: Preserving individual privacy and enabling efficient social learning are both important desiderata but seem fundamentally at odds with each other.
We do so by controlling information leakage using rigorous statistical guarantees that are based on differential privacy (DP)
Our results flesh out the nature of the trade-offs in both cases between the quality of the group decision outcomes, learning accuracy, communication cost, and the level of privacy protections that the agents are afforded.
- Score: 2.4401219403555814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: How can individuals exchange information to learn from each other despite their privacy needs and security concerns? For example, consider individuals deliberating a contentious topic and being concerned about divulging their private experiences. Preserving individual privacy and enabling efficient social learning are both important desiderata but seem fundamentally at odds with each other and very hard to reconcile. We do so by controlling information leakage using rigorous statistical guarantees that are based on differential privacy (DP). Our agents use log-linear rules to update their beliefs after communicating with their neighbors. Adding DP randomization noise to beliefs provides communicating agents with plausible deniability with regard to their private information and their network neighborhoods. We consider two learning environments one for distributed maximum-likelihood estimation given a finite number of private signals and another for online learning from an infinite, intermittent signal stream. Noisy information aggregation in the finite case leads to interesting tradeoffs between rejecting low-quality states and making sure all high-quality states are accepted in the algorithm output. Our results flesh out the nature of the trade-offs in both cases between the quality of the group decision outcomes, learning accuracy, communication cost, and the level of privacy protections that the agents are afforded.
Related papers
- Differential Privacy-Driven Framework for Enhancing Heart Disease Prediction [7.473832609768354]
Machine learning is critical in healthcare, supporting personalized treatment, early disease detection, predictive analytics, image interpretation, drug discovery, efficient operations, and patient monitoring.
In this paper, we utilize machine learning methodologies, including differential privacy and federated learning, to develop privacy-preserving models.
Our results show that using a federated learning model with differential privacy achieved a test accuracy of 85%, ensuring patient data remained secure and private throughout the process.
arXiv Detail & Related papers (2025-04-25T01:27:40Z) - PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action [54.11479432110771]
PrivacyLens is a novel framework designed to extend privacy-sensitive seeds into expressive vignettes and further into agent trajectories.
We instantiate PrivacyLens with a collection of privacy norms grounded in privacy literature and crowdsourced seeds.
State-of-the-art LMs, like GPT-4 and Llama-3-70B, leak sensitive information in 25.68% and 38.69% of cases, even when prompted with privacy-enhancing instructions.
arXiv Detail & Related papers (2024-08-29T17:58:38Z) - A Systematic and Formal Study of the Impact of Local Differential Privacy on Fairness: Preliminary Results [5.618541935188389]
Differential privacy (DP) is the predominant solution for privacy-preserving Machine learning (ML) algorithms.
Recent experimental studies have shown that local DP can impact ML prediction for different subgroups of individuals.
We study how the fairness of the decisions made by the ML model changes under local DP for different levels of privacy and data distributions.
arXiv Detail & Related papers (2024-05-23T15:54:03Z) - Federated Transfer Learning with Differential Privacy [21.50525027559563]
We formulate the notion of textitfederated differential privacy, which offers privacy guarantees for each data set without assuming a trusted central server.
We show that federated differential privacy is an intermediate privacy model between the well-established local and central models of differential privacy.
arXiv Detail & Related papers (2024-03-17T21:04:48Z) - TernaryVote: Differentially Private, Communication Efficient, and
Byzantine Resilient Distributed Optimization on Heterogeneous Data [50.797729676285876]
We propose TernaryVote, which combines a ternary compressor and the majority vote mechanism to realize differential privacy, gradient compression, and Byzantine resilience simultaneously.
We theoretically quantify the privacy guarantee through the lens of the emerging f-differential privacy (DP) and the Byzantine resilience of the proposed algorithm.
arXiv Detail & Related papers (2024-02-16T16:41:14Z) - PRISM: Mitigating EHR Data Sparsity via Learning from Missing Feature Calibrated Prototype Patient Representations [7.075420686441701]
PRISM is a framework that indirectly imputes data by leveraging prototype representations of similar patients.
PRISM also includes a feature confidence module, which evaluates the reliability of each feature considering missing statuses.
Our experiments on the MIMIC-III, MIMIC-IV, PhysioNet Challenge 2012, eICU datasets demonstrate PRISM's superior performance in predicting in-hospital mortality and 30-day readmission tasks.
arXiv Detail & Related papers (2023-09-08T07:01:38Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - DPMAC: Differentially Private Communication for Cooperative Multi-Agent
Reinforcement Learning [21.961558461211165]
Communication lays the foundation for cooperation in human society and in multi-agent reinforcement learning (MARL)
We propose the textitdifferentially private multi-agent communication (DPMAC) algorithm, which protects the sensitive information of individual agents by equipping each agent with a local message sender with rigorous $(epsilon, delta)$-differential privacy guarantee.
We prove the existence of a Nash equilibrium in cooperative MARL with privacy-preserving communication, which suggests that this problem is game-theoretically learnable.
arXiv Detail & Related papers (2023-08-19T04:26:23Z) - Differentially Private Distributed Estimation and Learning [2.4401219403555814]
We study distributed estimation and learning problems in a networked environment.
Agents exchange information to estimate unknown statistical properties of random variables from privately observed samples.
Agents can estimate the unknown quantities by exchanging information about their private observations, but they also face privacy risks.
arXiv Detail & Related papers (2023-06-28T01:41:30Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability.
We study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP)
More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms.
arXiv Detail & Related papers (2023-02-19T16:58:53Z) - Exploratory Analysis of Federated Learning Methods with Differential
Privacy on MIMIC-III [0.7349727826230862]
Federated learning methods offer the possibility of training machine learning models on privacy-sensitive data sets.
We present an evaluation of the impact of different federation and differential privacy techniques when training models on the open-source MIMIC-III dataset.
arXiv Detail & Related papers (2023-02-08T17:27:44Z) - Privacy-Preserving Joint Edge Association and Power Optimization for the
Internet of Vehicles via Federated Multi-Agent Reinforcement Learning [74.53077322713548]
We investigate the privacy-preserving joint edge association and power allocation problem.
The proposed solution strikes a compelling trade-off, while preserving a higher privacy level than the state-of-the-art solutions.
arXiv Detail & Related papers (2023-01-26T10:09:23Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Differentially Private Federated Combinatorial Bandits with Constraints [8.390356883529172]
This work investigates a group of agents working concurrently to solve similar bandit problems while maintaining quality constraints.
We show that our algorithm provides an improvement in terms of regret while upholding quality threshold and meaningful privacy guarantees.
arXiv Detail & Related papers (2022-06-27T11:14:28Z) - "Am I Private and If So, how Many?" -- Using Risk Communication Formats
for Making Differential Privacy Understandable [0.0]
We adapt risk communication formats in conjunction with a model for the privacy risks of Differential Privacy.
We evaluate these novel privacy communication formats in a crowdsourced study.
arXiv Detail & Related papers (2022-04-08T13:30:07Z) - Privacy Amplification via Shuffling for Linear Contextual Bandits [51.94904361874446]
We study the contextual linear bandit problem with differential privacy (DP)
We show that it is possible to achieve a privacy/utility trade-off between JDP and LDP by leveraging the shuffle model of privacy.
Our result shows that it is possible to obtain a tradeoff between JDP and LDP by leveraging the shuffle model while preserving local privacy.
arXiv Detail & Related papers (2021-12-11T15:23:28Z) - Privacy-Preserving Communication-Efficient Federated Multi-Armed Bandits [17.039484057126337]
Communication bottleneck and data privacy are two critical concerns in federated multi-armed bandit (MAB) problems.
We design the privacy-preserving communication-efficient algorithm in such problems and study the interactions among privacy, communication and learning performance in terms of the regret.
arXiv Detail & Related papers (2021-11-02T12:56:12Z) - Robustness Threats of Differential Privacy [70.818129585404]
We experimentally demonstrate that networks, trained with differential privacy, in some settings might be even more vulnerable in comparison to non-private versions.
We study how the main ingredients of differentially private neural networks training, such as gradient clipping and noise addition, affect the robustness of the model.
arXiv Detail & Related papers (2020-12-14T18:59:24Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
We design privacy preserving exploration policies for episodic reinforcement learning (RL)
We first provide a meaningful privacy formulation using the notion of joint differential privacy (JDP)
We then develop a private optimism-based learning algorithm that simultaneously achieves strong PAC and regret bounds, and enjoys a JDP guarantee.
arXiv Detail & Related papers (2020-09-18T20:18:35Z) - RDP-GAN: A R\'enyi-Differential Privacy based Generative Adversarial
Network [75.81653258081435]
Generative adversarial network (GAN) has attracted increasing attention recently owing to its impressive ability to generate realistic samples with high privacy protection.
However, when GANs are applied on sensitive or private training examples, such as medical or financial records, it is still probable to divulge individuals' sensitive and private information.
We propose a R'enyi-differentially private-GAN (RDP-GAN), which achieves differential privacy (DP) in a GAN by carefully adding random noises on the value of the loss function during training.
arXiv Detail & Related papers (2020-07-04T09:51:02Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users.
An adversary may still be able to infer the private training data by attacking the released model.
Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models.
arXiv Detail & Related papers (2020-05-01T04:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.