Gaussian Ensemble Belief Propagation for Efficient Inference in High-Dimensional Systems
- URL: http://arxiv.org/abs/2402.08193v5
- Date: Mon, 30 Sep 2024 02:01:24 GMT
- Title: Gaussian Ensemble Belief Propagation for Efficient Inference in High-Dimensional Systems
- Authors: Dan MacKinlay, Russell Tsuchida, Dan Pagendam, Petra Kuhnert,
- Abstract summary: Efficient inference in high-dimensional models is a central challenge in machine learning.
We introduce the Ensemble Kalman Filter (EnKF) and Gaussian Belief Propagation (GaBP)
GEnBP updates ensembles of prior samples into posterior samples by passing low-rank local messages over the edges of a graphical model.
- Score: 3.6773638205393198
- License:
- Abstract: Efficient inference in high-dimensional models is a central challenge in machine learning. We introduce the Gaussian Ensemble Belief Propagation (GEnBP) algorithm, which combines the strengths of the Ensemble Kalman Filter (EnKF) and Gaussian Belief Propagation (GaBP) to address this challenge. GEnBP updates ensembles of prior samples into posterior samples by passing low-rank local messages over the edges of a graphical model, enabling efficient handling of high-dimensional states, parameters, and complex, noisy, black-box generation processes. By utilizing local message passing within a graphical model structure, GEnBP effectively manages complex dependency structures and remains computationally efficient even when the ensemble size is much smaller than the inference dimension - a common scenario in spatiotemporal modeling, image processing, and physical model inversion. We demonstrate that GEnBP can be applied to various problem structures, including data assimilation, system identification, and hierarchical models, and show through experiments that it outperforms existing methods in terms of accuracy and computational efficiency. Supporting code is available at https://github.com/danmackinlay/GEnBP
Related papers
- Towards Efficient Modeling and Inference in Multi-Dimensional Gaussian
Process State-Space Models [11.13664702335756]
We propose to integrate the efficient transformed Gaussian process (ETGP) into the GPSSM to efficiently model the transition function in high-dimensional latent state space.
We also develop a corresponding variational inference algorithm that surpasses existing methods in terms of parameter count and computational complexity.
arXiv Detail & Related papers (2023-09-03T04:34:33Z) - T1: Scaling Diffusion Probabilistic Fields to High-Resolution on Unified
Visual Modalities [69.16656086708291]
Diffusion Probabilistic Field (DPF) models the distribution of continuous functions defined over metric spaces.
We propose a new model comprising of a view-wise sampling algorithm to focus on local structure learning.
The model can be scaled to generate high-resolution data while unifying multiple modalities.
arXiv Detail & Related papers (2023-05-24T03:32:03Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - A Generalized EigenGame with Extensions to Multiview Representation
Learning [0.28647133890966997]
Generalized Eigenvalue Problems (GEPs) encompass a range of interesting dimensionality reduction methods.
We develop an approach to solving GEPs in which all constraints are softly enforced by Lagrange multipliers.
We show that our approaches share much of the theoretical grounding of the previous Hebbian and game theoretic approaches for the linear case.
We demonstrate the effectiveness of our method for solving GEPs in the setting of canonical multiview datasets.
arXiv Detail & Related papers (2022-11-21T10:11:13Z) - Design of Compressed Sensing Systems via Density-Evolution Framework for
Structure Recovery in Graphical Models [10.667885727418705]
It has been shown that learning the structure of Bayesian networks from observational data is an NP-Hard problem.
We propose a novel density-evolution based framework for optimizing compressed linear measurement systems.
We show that the structure of GBN can indeed be recovered from resulting compressed measurements.
arXiv Detail & Related papers (2022-03-17T22:16:38Z) - Scaling Structured Inference with Randomization [64.18063627155128]
We propose a family of dynamic programming (RDP) randomized for scaling structured models to tens of thousands of latent states.
Our method is widely applicable to classical DP-based inference.
It is also compatible with automatic differentiation so can be integrated with neural networks seamlessly.
arXiv Detail & Related papers (2021-12-07T11:26:41Z) - Scalable Gaussian Processes for Data-Driven Design using Big Data with
Categorical Factors [14.337297795182181]
Gaussian processes (GP) have difficulties in accommodating big datasets, categorical inputs, and multiple responses.
We propose a GP model that utilizes latent variables and functions obtained through variational inference to address the aforementioned challenges simultaneously.
Our approach is demonstrated for machine learning of ternary oxide materials and topology optimization of a multiscale compliant mechanism.
arXiv Detail & Related papers (2021-06-26T02:17:23Z) - Learning High-Dimensional Distributions with Latent Neural Fokker-Planck
Kernels [67.81799703916563]
We introduce new techniques to formulate the problem as solving Fokker-Planck equation in a lower-dimensional latent space.
Our proposed model consists of latent-distribution morphing, a generator and a parameterized Fokker-Planck kernel function.
arXiv Detail & Related papers (2021-05-10T17:42:01Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
This paper proposes a novel spatial-spectral HSI classification method via multiple random anchor graphs ensemble learning (RAGE)
Firstly, the local binary pattern is adopted to extract the more descriptive features on each selected band, which preserves local structures and subtle changes of a region.
Secondly, the adaptive neighbors assignment is introduced in the construction of anchor graph, to reduce the computational complexity.
arXiv Detail & Related papers (2021-03-25T09:31:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.