Translating Images to Road Network: A Sequence-to-Sequence Perspective
- URL: http://arxiv.org/abs/2402.08207v2
- Date: Sat, 31 Aug 2024 06:35:17 GMT
- Title: Translating Images to Road Network: A Sequence-to-Sequence Perspective
- Authors: Jiachen Lu, Renyuan Peng, Xinyue Cai, Hang Xu, Feng Wen, Wei Zhang, Li Zhang,
- Abstract summary: Road network is essential for the generation of high-definition maps.
Existing methods struggle to merge the two types of data domains effectively.
We propose a unified representation of both types of data domain by projecting both Euclidean and non-Euclidean data into an integer series called RoadNet Sequence.
- Score: 32.39335559663393
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The extraction of road network is essential for the generation of high-definition maps since it enables the precise localization of road landmarks and their interconnections. However, generating road network poses a significant challenge due to the conflicting underlying combination of Euclidean (e.g., road landmarks location) and non-Euclidean (e.g., road topological connectivity) structures. Existing methods struggle to merge the two types of data domains effectively, but few of them address it properly. Instead, our work establishes a unified representation of both types of data domain by projecting both Euclidean and non-Euclidean data into an integer series called RoadNet Sequence. Further than modeling an auto-regressive sequence-to-sequence Transformer model to understand RoadNet Sequence, we decouple the dependency of RoadNet Sequence into a mixture of auto-regressive and non-autoregressive dependency. Building on this, our proposed non-autoregressive sequence-to-sequence approach leverages non-autoregressive dependencies while fixing the gap towards auto-regressive dependencies, resulting in success on both efficiency and accuracy. We further identify two main bottlenecks in the current RoadNetTransformer on a non-overfitting split of the dataset: poor landmark detection limited by the BEV Encoder and error propagation to topology reasoning. Therefore, we propose Topology-Inherited Training to inherit better topology knowledge into RoadNetTransformer. Additionally, we collect SD-Maps from open-source map datasets and use this prior information to significantly improve landmark detection and reachability. Extensive experiments on nuScenes dataset demonstrate the superiority of RoadNet Sequence representation and the non-autoregressive approach compared to existing state-of-the-art alternatives.
Related papers
- Holistically-Nested Structure-Aware Graph Neural Network for Road Extraction [6.537257686406911]
This paper presents a novel graph neural network (GNN) which simultaneously detects both road regions and road borders.
Experiments on challenging dataset demonstrate that the proposed architecture can improve the road border delineation and road extraction accuracy.
arXiv Detail & Related papers (2024-07-02T20:11:09Z) - GASE: Graph Attention Sampling with Edges Fusion for Solving Vehicle Routing Problems [6.084414764415137]
We propose an adaptive Graph Attention Sampling with the Edges Fusion framework to solve vehicle routing problems.
Our proposed model outperforms the existing methods by 2.08%-6.23% and shows stronger generalization ability.
arXiv Detail & Related papers (2024-05-21T03:33:07Z) - Network Alignment with Transferable Graph Autoencoders [79.89704126746204]
We propose a novel graph autoencoder architecture designed to extract powerful and robust node embeddings.
We prove that the generated embeddings are associated with the eigenvalues and eigenvectors of the graphs.
Our proposed framework also leverages transfer learning and data augmentation to achieve efficient network alignment at a very large scale without retraining.
arXiv Detail & Related papers (2023-10-05T02:58:29Z) - DDGHM: Dual Dynamic Graph with Hybrid Metric Training for Cross-Domain
Sequential Recommendation [15.366783212837515]
Sequential Recommendation (SR) characterizes evolving patterns of user behaviors by modeling how users transit among items.
To solve this problem, we focus on Cross-Domain Sequential Recommendation (CDSR)
We propose DDGHM, a novel framework for the CDSR problem, which includes two main modules, dual dynamic graph modeling and hybrid metric training.
arXiv Detail & Related papers (2022-09-21T07:53:06Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Trajectory Prediction with Graph-based Dual-scale Context Fusion [43.51107329748957]
We present a graph-based trajectory prediction network named the Dual Scale Predictor.
It encodes both the static and dynamical driving context in a hierarchical manner.
Thanks to the proposed dual-scale context fusion network, our DSP is able to generate accurate and human-like multi-modal trajectories.
arXiv Detail & Related papers (2021-11-02T13:42:16Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Unstructured Road Vanishing Point Detection Using the Convolutional
Neural Network and Heatmap Regression [3.8170259685864165]
We propose a novel solution combining the convolutional neural network (CNN) and heatmap regression to detect unstructured road VP.
The proposed algorithm firstly adopts a lightweight backbone, i.e., depthwise convolution modified HRNet, to extract hierarchical features of the unstructured road image.
Three advanced strategies, i.e., multi-scale supervised learning, heatmap super-resolution, and coordinate regression techniques are utilized to achieve fast and high-precision unstructured road VP detection.
arXiv Detail & Related papers (2020-06-08T15:44:37Z) - VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized
Representation [74.56282712099274]
This paper introduces VectorNet, a hierarchical graph neural network that exploits the spatial locality of individual road components represented by vectors.
By operating on the vectorized high definition (HD) maps and agent trajectories, we avoid lossy rendering and computationally intensive ConvNet encoding steps.
We evaluate VectorNet on our in-house behavior prediction benchmark and the recently released Argoverse forecasting dataset.
arXiv Detail & Related papers (2020-05-08T19:07:03Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.