URoadNet: Dual Sparse Attentive U-Net for Multiscale Road Network Extraction
- URL: http://arxiv.org/abs/2412.17573v1
- Date: Mon, 23 Dec 2024 13:45:29 GMT
- Title: URoadNet: Dual Sparse Attentive U-Net for Multiscale Road Network Extraction
- Authors: Jie Song, Yue Sun, Ziyun Cai, Liang Xiao, Yawen Huang, Yefeng Zheng,
- Abstract summary: We introduce a computationally efficient and powerful framework for elegant road-aware segmentation.
Our method, called URoadNet, effectively encodes fine-grained local road connectivity and holistic global topological semantics.
Our approach represents a significant advancement in the field of road network extraction.
- Score: 35.39993205110938
- License:
- Abstract: The challenges of road network segmentation demand an algorithm capable of adapting to the sparse and irregular shapes, as well as the diverse context, which often leads traditional encoding-decoding methods and simple Transformer embeddings to failure. We introduce a computationally efficient and powerful framework for elegant road-aware segmentation. Our method, called URoadNet, effectively encodes fine-grained local road connectivity and holistic global topological semantics while decoding multiscale road network information. URoadNet offers a novel alternative to the U-Net architecture by integrating connectivity attention, which can exploit intra-road interactions across multi-level sampling features with reduced computational complexity. This local interaction serves as valuable prior information for learning global interactions between road networks and the background through another integrality attention mechanism. The two forms of sparse attention are arranged alternatively and complementarily, and trained jointly, resulting in performance improvements without significant increases in computational complexity. Extensive experiments on various datasets with different resolutions, including Massachusetts, DeepGlobe, SpaceNet, and Large-Scale remote sensing images, demonstrate that URoadNet outperforms state-of-the-art techniques. Our approach represents a significant advancement in the field of road network extraction, providing a computationally feasible solution that achieves high-quality segmentation results.
Related papers
- Semantic-Enhanced Representation Learning for Road Networks with Temporal Dynamics [33.940044533340235]
We introduce a novel framework called Toast for learning general-purpose representations of road networks, along with its advanced counterpart DyToast.
Specifically, we propose to encode two pivotal semantic characteristics intrinsic to road networks: traffic patterns and traveling semantics.
Our proposed framework consistently outperforms the state-of-the-art baselines by a significant margin.
arXiv Detail & Related papers (2024-03-18T05:59:56Z) - Translating Images to Road Network: A Sequence-to-Sequence Perspective [32.39335559663393]
Road network is essential for the generation of high-definition maps.
Existing methods struggle to merge the two types of data domains effectively.
We propose a unified representation of both types of data domain by projecting both Euclidean and non-Euclidean data into an integer series called RoadNet Sequence.
arXiv Detail & Related papers (2024-02-13T04:12:41Z) - Fine-Grained Extraction of Road Networks via Joint Learning of
Connectivity and Segmentation [5.496893845821393]
Road network extraction from satellite images is widely applicated in intelligent traffic management and autonomous driving fields.
The high-resolution remote sensing images contain complex road areas and distracted background, which make it a challenge for road extraction.
We present a stacked multitask network for end-to-end segmenting roads while preserving connectivity correctness.
arXiv Detail & Related papers (2023-12-07T22:57:17Z) - Learning State-Augmented Policies for Information Routing in Communication Networks [84.76186111434818]
We develop a novel State Augmentation (SA) strategy to maximize the aggregate information at source nodes using graph neural network (GNN) architectures.
We leverage an unsupervised learning procedure to convert the output of the GNN architecture to optimal information routing strategies.
In the experiments, we perform the evaluation on real-time network topologies to validate our algorithms.
arXiv Detail & Related papers (2023-09-30T04:34:25Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies.
We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally.
We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.
arXiv Detail & Related papers (2023-01-20T17:06:34Z) - Translated Skip Connections -- Expanding the Receptive Fields of Fully
Convolutional Neural Networks [0.5584060970507506]
We propose a neural network module, extending traditional skip connections, called the translated skip connection.
Translated skip connections geometrically increase the receptive field of an architecture with negligible impact on both the size of the parameter space and computational complexity.
arXiv Detail & Related papers (2022-11-03T19:30:40Z) - Aerial Images Meet Crowdsourced Trajectories: A New Approach to Robust
Road Extraction [110.61383502442598]
We introduce a novel neural network framework termed Cross-Modal Message Propagation Network (CMMPNet)
CMMPNet is composed of two deep Auto-Encoders for modality-specific representation learning and a tailor-designed Dual Enhancement Module for cross-modal representation refinement.
Experiments on three real-world benchmarks demonstrate the effectiveness of our CMMPNet for robust road extraction.
arXiv Detail & Related papers (2021-11-30T04:30:10Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Purification and Entanglement Routing on Quantum Networks [55.41644538483948]
A quantum network equipped with imperfect channel fidelities and limited memory storage time can distribute entanglement between users.
We introduce effectives enabling fast path-finding algorithms for maximizing entanglement shared between two nodes on a quantum network.
arXiv Detail & Related papers (2020-11-23T19:00:01Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
Dynamic Graph Network (DG-Net) is a complete directed acyclic graph, where the nodes represent convolutional blocks and the edges represent connection paths.
Instead of using the same path of the network, DG-Net aggregates features dynamically in each node, which allows the network to have more representation ability.
arXiv Detail & Related papers (2020-10-02T16:50:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.