論文の概要: Inherent Diverse Redundant Safety Mechanisms for AI-based Software
Elements in Automotive Applications
- arxiv url: http://arxiv.org/abs/2402.08208v2
- Date: Thu, 29 Feb 2024 18:18:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-01 17:43:13.300956
- Title: Inherent Diverse Redundant Safety Mechanisms for AI-based Software
Elements in Automotive Applications
- Title(参考訳): 自動車応用におけるAIベースのソフトウェア要素の進化的横冗長安全性機構
- Authors: Mandar Pitale, Alireza Abbaspour, Devesh Upadhyay
- Abstract要約: 本稿では,自律走行システムにおける人工知能(AI)アルゴリズムの役割と課題について考察する。
主な関心事は、AIモデルの初期のトレーニングデータを超えて一般化する能力(と必要性)に関連している。
本稿では、自律運転のような安全クリティカルなアプリケーションにおける過信AIモデルに関連するリスクについて検討する。
- 参考スコア(独自算出の注目度): 1.6495054381576084
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper explores the role and challenges of Artificial Intelligence (AI)
algorithms, specifically AI-based software elements, in autonomous driving
systems. These AI systems are fundamental in executing real-time critical
functions in complex and high-dimensional environments. They handle vital tasks
like multi-modal perception, cognition, and decision-making tasks such as
motion planning, lane keeping, and emergency braking. A primary concern relates
to the ability (and necessity) of AI models to generalize beyond their initial
training data. This generalization issue becomes evident in real-time
scenarios, where models frequently encounter inputs not represented in their
training or validation data. In such cases, AI systems must still function
effectively despite facing distributional or domain shifts. This paper
investigates the risk associated with overconfident AI models in
safety-critical applications like autonomous driving. To mitigate these risks,
methods for training AI models that help maintain performance without
overconfidence are proposed. This involves implementing certainty reporting
architectures and ensuring diverse training data. While various
distribution-based methods exist to provide safety mechanisms for AI models,
there is a noted lack of systematic assessment of these methods, especially in
the context of safety-critical automotive applications. Many methods in the
literature do not adapt well to the quick response times required in
safety-critical edge applications. This paper reviews these methods, discusses
their suitability for safety-critical applications, and highlights their
strengths and limitations. The paper also proposes potential improvements to
enhance the safety and reliability of AI algorithms in autonomous vehicles in
the context of rapid and accurate decision-making processes.
- Abstract(参考訳): 本稿では,自律運転システムにおける人工知能(AI)アルゴリズム,特にAIベースのソフトウェア要素の役割と課題について考察する。
これらのaiシステムは、複雑な高次元環境でリアルタイム臨界関数を実行するのに基本である。
それらは、マルチモーダル知覚、認知、運動計画、車線維持、緊急ブレーキなどの意思決定といった重要なタスクを扱う。
主な関心事は、AIモデルの初期のトレーニングデータを超えて一般化する能力(と必要性)に関連している。
この一般化問題は、モデルがトレーニングや検証データで表現されない入力に頻繁に遭遇するリアルタイムシナリオで明らかになる。
そのような場合、aiシステムは、分散またはドメインシフトに直面したにもかかわらず、効果的に機能しなくてはならない。
本稿では、自律運転のような安全クリティカルなアプリケーションにおける過信AIモデルに関連するリスクについて検討する。
これらのリスクを軽減するために,自信過剰なパフォーマンス維持を支援するaiモデルのトレーニング手法を提案する。
これには、確実にレポートアーキテクチャを実装し、多様なトレーニングデータを確保することが含まれる。
aiモデルの安全メカニズムを提供するために、様々な分散ベースの方法が存在するが、特に安全クリティカルな自動車応用の文脈において、これらの方法の体系的な評価が特に欠如している。
文献における多くの手法は、安全クリティカルエッジアプリケーションに必要な迅速な応答時間にうまく適応しない。
本稿では,これらの手法を概観し,安全性に問題のあるアプリケーションに対する適合性を考察し,その強みと限界を強調した。
また、迅速かつ正確な意思決定プロセスにおいて、自動運転車におけるAIアルゴリズムの安全性と信頼性を高めるための潜在的な改善を提案する。
関連論文リスト
- Landscape of AI safety concerns -- A methodology to support safety assurance for AI-based autonomous systems [0.0]
AIは重要な技術として登場し、さまざまなアプリケーションにまたがる進歩を加速している。
AIコンポーネントを組み込んだシステムの安全性を確保するという課題は、極めて重要である。
本稿では,AIシステムにおける安全保証事例作成を支援する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-12-18T16:38:16Z) - Key Safety Design Overview in AI-driven Autonomous Vehicles [0.0]
高いレベルの機能的安全性と堅牢なソフトウェア設計を維持することが不可欠です。
本稿では,自動車用ソフトウェアとハードウェアに必要な安全アーキテクチャと系統的アプローチについて検討する。
論文 参考訳(メタデータ) (2024-12-12T01:48:45Z) - Generative AI Agents in Autonomous Machines: A Safety Perspective [9.02400798202199]
生成AIエージェントは、非並列機能を提供するが、ユニークな安全性上の懸念もある。
本研究では、生成モデルが物理自律機械にエージェントとして統合される際の安全要件の進化について検討する。
我々は、自律機械で生成AI技術を使用するための総合的な安全スコアカードの開発と実装を推奨する。
論文 参考訳(メタデータ) (2024-10-20T20:07:08Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - Concept-Guided LLM Agents for Human-AI Safety Codesign [6.603483691167379]
ジェネレーティブAIは、安全工学を含むソフトウェア工学においてますます重要になっている。
ソフトウェアシステムの複雑さと安全性を効果的に解決できる、より高度で高度なアプローチを開発することが重要です。
安全解析やヒューマンAI符号設計に大規模言語モデルを活用するための,効率的かつハイブリッドな戦略を提案する。
論文 参考訳(メタデータ) (2024-04-03T11:37:01Z) - On STPA for Distributed Development of Safe Autonomous Driving: An Interview Study [0.7851536646859475]
System-Theoretic Process Analysis (STPA)は、防衛や航空宇宙といった安全関連分野に適用される新しい手法である。
STPAは、分散システム開発とマルチアトラクション設計レベルを備えた自動車システム工学において、完全には有効でない前提条件を前提としている。
これは継続的開発とデプロイメントにおける保守性の問題と見なすことができる。
論文 参考訳(メタデータ) (2024-03-14T15:56:02Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
我々はランダムフォレストとリカレントニューラルネットワークアーキテクチャに基づく2つの軽量ドライバ認証システムを開発した。
我々は,SMARTCANとGANCANという2つの新しいエスケープアタックを開発することで,これらのシステムに対する攻撃を最初に提案する。
コントリビューションを通じて、これらのシステムを安全に採用する実践者を支援し、車の盗難を軽減し、ドライバーのセキュリティを高める。
論文 参考訳(メタデータ) (2023-06-09T14:33:26Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - From Machine Learning to Robotics: Challenges and Opportunities for
Embodied Intelligence [113.06484656032978]
記事は、インテリジェンスが機械学習技術の進歩の鍵を握っていると主張している。
私たちは、インテリジェンスを具体化するための課題と機会を強調します。
本稿では,ロボット学習の最先端性を著しく向上させる研究の方向性を提案する。
論文 参考訳(メタデータ) (2021-10-28T16:04:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。