論文の概要: On STPA for Distributed Development of Safe Autonomous Driving: An Interview Study
- arxiv url: http://arxiv.org/abs/2403.09509v1
- Date: Thu, 14 Mar 2024 15:56:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-15 19:47:59.982826
- Title: On STPA for Distributed Development of Safe Autonomous Driving: An Interview Study
- Title(参考訳): 安全な自動運転の分散開発のためのSTPAについて:インタビュー研究
- Authors: Ali Nouri, Christian Berger, Fredrik Törner,
- Abstract要約: System-Theoretic Process Analysis (STPA)は、防衛や航空宇宙といった安全関連分野に適用される新しい手法である。
STPAは、分散システム開発とマルチアトラクション設計レベルを備えた自動車システム工学において、完全には有効でない前提条件を前提としている。
これは継続的開発とデプロイメントにおける保守性の問題と見なすことができる。
- 参考スコア(独自算出の注目度): 0.7851536646859475
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Safety analysis is used to identify hazards and build knowledge during the design phase of safety-relevant functions. This is especially true for complex AI-enabled and software intensive systems such as Autonomous Drive (AD). System-Theoretic Process Analysis (STPA) is a novel method applied in safety-related fields like defense and aerospace, which is also becoming popular in the automotive industry. However, STPA assumes prerequisites that are not fully valid in the automotive system engineering with distributed system development and multi-abstraction design levels. This would inhibit software developers from using STPA to analyze their software as part of a bigger system, resulting in a lack of traceability. This can be seen as a maintainability challenge in continuous development and deployment (DevOps). In this paper, STPA's different guidelines for the automotive industry, e.g. J31887/ISO21448/STPA handbook, are firstly compared to assess their applicability to the distributed development of complex AI-enabled systems like AD. Further, an approach to overcome the challenges of using STPA in a multi-level design context is proposed. By conducting an interview study with automotive industry experts for the development of AD, the challenges are validated and the effectiveness of the proposed approach is evaluated.
- Abstract(参考訳): 安全分析は、安全関連機能の設計フェーズにおいて、ハザードを特定し、知識を構築するために用いられる。
これは、Autonomous Drive (AD)のような複雑なAI対応およびソフトウェア集約システムに特に当てはまる。
System-Theoretic Process Analysis (STPA)は、防衛や航空宇宙といった安全関連分野に適用される新しい手法であり、自動車産業でも普及している。
しかし、STPAは、分散システム開発とマルチアトラクション設計レベルを備えた自動車システム工学において、完全には有効でない前提条件を前提としている。
これにより、ソフトウェア開発者は、より大きなシステムの一部としてソフトウェアを分析するためにSTPAを使用するのを妨げ、結果としてトレーサビリティが欠如する。
これは継続的開発とデプロイメント(DevOps)における保守性の問題と見なすことができる。
本稿では、自動車産業におけるSTPAの異なるガイドラインであるJ31887/ISO21448/STPAハンドブックを比較し、ADのような複雑なAI対応システムの分散開発への適用性を評価する。
さらに,マルチレベル設計におけるSTPAの課題を克服する手法を提案する。
自動車業界の専門家を対象にAD開発に関するインタビュー研究を行い,課題を検証し,提案手法の有効性を評価する。
関連論文リスト
- From Silos to Systems: Process-Oriented Hazard Analysis for AI Systems [2.226040060318401]
システム理論プロセス分析(STPA)をAIの操作と開発プロセスの解析に応用する。
我々は、機械学習アルゴリズムに依存したシステムと、3つのケーススタディに焦点をあてる。
私たちは、AIシステムに適したいくつかの適応があるにもかかわらず、anAを実行するための重要な概念とステップが容易に適用できることに気付きました。
論文 参考訳(メタデータ) (2024-10-29T20:43:18Z) - S-RAF: A Simulation-Based Robustness Assessment Framework for Responsible Autonomous Driving [6.559634434583204]
自動運転のためのシミュレーションベースロバストネス評価フレームワーク(S-RAF)を紹介する。
堅牢性を定量化することで、S-RAFは開発者やステークホルダーが安全で責任のある運転エージェントを構築するのを助ける。
S-RAFは、テストコストの削減や、現実世界でテストするのが安全でないエッジケースを探索する機能など、大きなメリットがある。
論文 参考訳(メタデータ) (2024-08-16T07:37:05Z) - EAIRiskBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [47.69642609574771]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
EAIRiskBenchは、EAIシナリオにおける自動物理的リスクアセスメントのための新しいフレームワークである。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Inherent Diverse Redundant Safety Mechanisms for AI-based Software
Elements in Automotive Applications [1.6495054381576084]
本稿では,自律走行システムにおける人工知能(AI)アルゴリズムの役割と課題について考察する。
主な関心事は、AIモデルの初期のトレーニングデータを超えて一般化する能力(と必要性)に関連している。
本稿では、自律運転のような安全クリティカルなアプリケーションにおける過信AIモデルに関連するリスクについて検討する。
論文 参考訳(メタデータ) (2024-02-13T04:15:26Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z) - Simulation-based Safety Assurance for an AVP System incorporating
Learning-Enabled Components [0.6526824510982802]
テスト、検証、検証 AD/ADASセーフティクリティカルなアプリケーションが大きな課題のひとつとして残っています。
安全クリティカルな学習可能システムの検証と検証を目的としたシミュレーションベースの開発プラットフォームについて説明する。
論文 参考訳(メタデータ) (2023-09-28T09:00:31Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Developing an AI-enabled IIoT platform -- Lessons learned from early use
case validation [47.37985501848305]
本稿では,このプラットフォームの設計について紹介し,AIによる視覚的品質検査の実証者の観点からの早期評価について述べる。
これは、この初期の評価活動で学んだ洞察と教訓によって補完される。
論文 参考訳(メタデータ) (2022-07-10T18:51:12Z) - Towards Safe, Explainable, and Regulated Autonomous Driving [11.043966021881426]
本稿では、自律制御、説明可能なAI(XAI)、規制コンプライアンスを統合するフレームワークを提案する。
フレームワークの目標を達成するのに役立つ、関連するXAIアプローチについて説明します。
論文 参考訳(メタデータ) (2021-11-20T05:06:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。