Artificial Intelligence for Literature Reviews: Opportunities and
Challenges
- URL: http://arxiv.org/abs/2402.08565v1
- Date: Tue, 13 Feb 2024 16:05:51 GMT
- Title: Artificial Intelligence for Literature Reviews: Opportunities and
Challenges
- Authors: Francisco Bolanos, Angelo Salatino, Francesco Osborne, Enrico Motta
- Abstract summary: This manuscript presents a comprehensive review of the use of Artificial Intelligence in Systematic Literature Reviews.
A SLR is a rigorous and organised methodology that assesses and integrates previous research on a given topic.
We examine 21 leading SLR tools using a framework that combines 23 traditional features with 11 AI features.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This manuscript presents a comprehensive review of the use of Artificial
Intelligence (AI) in Systematic Literature Reviews (SLRs). A SLR is a rigorous
and organised methodology that assesses and integrates previous research on a
given topic. Numerous tools have been developed to assist and partially
automate the SLR process. The increasing role of AI in this field shows great
potential in providing more effective support for researchers, moving towards
the semi-automatic creation of literature reviews. Our study focuses on how AI
techniques are applied in the semi-automation of SLRs, specifically in the
screening and extraction phases. We examine 21 leading SLR tools using a
framework that combines 23 traditional features with 11 AI features. We also
analyse 11 recent tools that leverage large language models for searching the
literature and assisting academic writing. Finally, the paper discusses current
trends in the field, outlines key research challenges, and suggests directions
for future research.
Related papers
- From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
Cross-modal reasoning (CMR) is increasingly recognized as a crucial capability in the progression toward more sophisticated artificial intelligence systems.
The recent trend of deploying Large Language Models (LLMs) to tackle CMR tasks has marked a new mainstream of approaches for enhancing their effectiveness.
This survey offers a nuanced exposition of current methodologies applied in CMR using LLMs, classifying these into a detailed three-tiered taxonomy.
arXiv Detail & Related papers (2024-09-19T02:51:54Z) - LLAssist: Simple Tools for Automating Literature Review Using Large Language Models [0.0]
LLAssist is an open-source tool designed to streamline literature reviews in academic research.
It uses Large Language Models (LLMs) and Natural Language Processing (NLP) techniques to automate key aspects of the review process.
arXiv Detail & Related papers (2024-07-19T02:48:54Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - Tool Learning with Large Language Models: A Survey [60.733557487886635]
Tool learning with large language models (LLMs) has emerged as a promising paradigm for augmenting the capabilities of LLMs to tackle highly complex problems.
Despite growing attention and rapid advancements in this field, the existing literature remains fragmented and lacks systematic organization.
arXiv Detail & Related papers (2024-05-28T08:01:26Z) - System for systematic literature review using multiple AI agents:
Concept and an empirical evaluation [5.194208843843004]
We introduce a novel multi-AI agent model designed to fully automate the process of conducting Systematic Literature Reviews.
The model operates through a user-friendly interface where researchers input their topic.
It generates a search string used to retrieve relevant academic papers.
The model then autonomously summarizes the abstracts of these papers.
arXiv Detail & Related papers (2024-03-13T10:27:52Z) - Planning, Creation, Usage: Benchmarking LLMs for Comprehensive Tool Utilization in Real-World Complex Scenarios [93.68764280953624]
UltraTool is a novel benchmark designed to improve and evaluate Large Language Models' ability in tool utilization.
It emphasizes real-world complexities, demanding accurate, multi-step planning for effective problem-solving.
A key feature of UltraTool is its independent evaluation of planning with natural language, which happens before tool usage.
arXiv Detail & Related papers (2024-01-30T16:52:56Z) - A Systematic Literature Review on Explainability for Machine/Deep
Learning-based Software Engineering Research [23.966640472958105]
This paper presents a systematic literature review of approaches that aim to improve the explainability of AI models within the context of Software Engineering.
We aim to summarize the SE tasks where XAI techniques have shown success to date; (2) classify and analyze different XAI techniques; and (3) investigate existing evaluation approaches.
arXiv Detail & Related papers (2024-01-26T03:20:40Z) - Streamlining the Selection Phase of Systematic Literature Reviews (SLRs) Using AI-Enabled GPT-4 Assistant API [0.0]
This study introduces a pioneering AI-based tool, configured specifically to streamline the efficiency of the article selection phase in Systematic Literature Reviews.
The tool successfully homogenizes the article selection process across a broad array of academic disciplines.
arXiv Detail & Related papers (2024-01-14T11:16:16Z) - Artificial intelligence to automate the systematic review of scientific
literature [0.0]
We present a survey of AI techniques proposed in the last 15 years to help researchers conduct systematic analyses of scientific literature.
We describe the tasks currently supported, the types of algorithms applied, and available tools proposed in 34 primary studies.
arXiv Detail & Related papers (2024-01-13T19:12:49Z) - Combatting Human Trafficking in the Cyberspace: A Natural Language
Processing-Based Methodology to Analyze the Language in Online Advertisements [55.2480439325792]
This project tackles the pressing issue of human trafficking in online C2C marketplaces through advanced Natural Language Processing (NLP) techniques.
We introduce a novel methodology for generating pseudo-labeled datasets with minimal supervision, serving as a rich resource for training state-of-the-art NLP models.
A key contribution is the implementation of an interpretability framework using Integrated Gradients, providing explainable insights crucial for law enforcement.
arXiv Detail & Related papers (2023-11-22T02:45:01Z) - Characterising Research Areas in the field of AI [68.8204255655161]
We identified the main conceptual themes by performing clustering analysis on the co-occurrence network of topics.
The results highlight the growing academic interest in research themes like deep learning, machine learning, and internet of things.
arXiv Detail & Related papers (2022-05-26T16:30:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.