論文の概要: NeRF Analogies: Example-Based Visual Attribute Transfer for NeRFs
- arxiv url: http://arxiv.org/abs/2402.08622v1
- Date: Tue, 13 Feb 2024 17:47:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-14 14:15:30.500882
- Title: NeRF Analogies: Example-Based Visual Attribute Transfer for NeRFs
- Title(参考訳): NeRFアナロジ:NeRFの例に基づく視覚属性伝達
- Authors: Michael Fischer, Zhengqin Li, Thu Nguyen-Phuoc, Aljaz Bozic, Zhao
Dong, Carl Marshall, Tobias Ritschel
- Abstract要約: ニューラル・ラジアンス・フィールド(NeRF)は3次元幾何学の特定の関係とシーンの外観を符号化する。
2次元画像からNeRFへの古典的画像類似性を一般化する。
本手法は3次元形状と外観の混合・マッチング積空間を探索する。
- 参考スコア(独自算出の注目度): 19.17715832282524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A Neural Radiance Field (NeRF) encodes the specific relation of 3D geometry
and appearance of a scene. We here ask the question whether we can transfer the
appearance from a source NeRF onto a target 3D geometry in a semantically
meaningful way, such that the resulting new NeRF retains the target geometry
but has an appearance that is an analogy to the source NeRF. To this end, we
generalize classic image analogies from 2D images to NeRFs. We leverage
correspondence transfer along semantic affinity that is driven by semantic
features from large, pre-trained 2D image models to achieve multi-view
consistent appearance transfer. Our method allows exploring the mix-and-match
product space of 3D geometry and appearance. We show that our method
outperforms traditional stylization-based methods and that a large majority of
users prefer our method over several typical baselines.
- Abstract(参考訳): ニューラル・ラジアンス・フィールド(NeRF)は3次元幾何学の特定の関係とシーンの外観を符号化する。
そこで我々は,原点NeRFからターゲット3次元形状への外観の移動を意味的に意味のある方法で行うことができるかどうかを問う。
この目的のために、2次元画像からNeRFへの古典的な画像類似性を一般化する。
我々は,多視点一貫した外観伝達を実現するために,大規模な2次元画像モデルからのセマンティック特徴によって駆動されるセマンティック親和性に沿った対応伝達を利用する。
本手法は3次元形状と外観の混合・マッチング積空間を探索する。
提案手法は従来のスタイリゼーション手法よりも優れており,多くのユーザが一般的なベースラインよりも提案手法を好んでいる。
関連論文リスト
- Style-NeRF2NeRF: 3D Style Transfer From Style-Aligned Multi-View Images [54.56070204172398]
本稿では,3次元シーンをスタイリングするための簡易かつ効果的なパイプラインを提案する。
我々は、スタイル整列画像-画像拡散モデルにより生成されたスタイリング画像を用いて、ソースNeRFモデルを精細化し、3Dスタイルの転送を行う。
本手法は,現実の3Dシーンに多彩な芸術的スタイルを,競争力のある品質で伝達できることを実証する。
論文 参考訳(メタデータ) (2024-06-19T09:36:18Z) - NeRFDeformer: NeRF Transformation from a Single View via 3D Scene Flows [60.291277312569285]
本研究では,単一観測値に基づいてNeRF表現を自動的に修正する手法を提案する。
本手法は, 変形を3次元流れ, 特に剛性変換の重み付き線形ブレンディングとして定義する。
また,単一観測によるNeRFシーンの修正問題を探索するための新しいデータセットも導入した。
論文 参考訳(メタデータ) (2024-06-15T07:58:08Z) - 3D Face Style Transfer with a Hybrid Solution of NeRF and Mesh
Rasterization [4.668492532161309]
我々は,3次元顔の表現にNeRF(Near Raddiance Field)を用い,それを2次元スタイルの移動と組み合わせて3次元顔のスタイリゼーションを提案する。
2Dスタイルの転送画像からNeRFを直接トレーニングすると、3Dの不整合が問題になり、ぼやけが生じる。
我々は、NeRFの高忠実度幾何再構成とメッシュの高速レンダリングの利点を組み合わせるために、NeRFとメッシュ化のハイブリッドフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:24:35Z) - Wonder3D: Single Image to 3D using Cross-Domain Diffusion [105.16622018766236]
Wonder3Dは、単一視点画像から高忠実なテクスチャメッシュを効率的に生成する新しい手法である。
画像から3Dまでのタスクの品質,一貫性,効率性を総括的に改善するため,領域間拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-10-23T15:02:23Z) - Single-Stage Diffusion NeRF: A Unified Approach to 3D Generation and
Reconstruction [77.69363640021503]
3D対応画像合成は、シーン生成や画像からの新規ビュー合成など、様々なタスクを含む。
本稿では,様々な物体の多視点画像から,ニューラルラディアンス場(NeRF)の一般化可能な事前学習を行うために,表現拡散モデルを用いた統一的アプローチであるSSDNeRFを提案する。
論文 参考訳(メタデータ) (2023-04-13T17:59:01Z) - FeatureNeRF: Learning Generalizable NeRFs by Distilling Foundation
Models [21.523836478458524]
一般化可能なNeRFに関する最近の研究は、単一または少数の画像からの新規なビュー合成に関する有望な結果を示している。
本研究では,事前学習された視覚モデルを蒸留することにより,一般化可能なNeRFを学習するためのFeatureNeRFという新しいフレームワークを提案する。
一般化可能な3次元特徴抽出器としてのFeatureNeRFの有効性を実証した。
論文 参考訳(メタデータ) (2023-03-22T17:57:01Z) - Learning Neural Radiance Fields from Multi-View Geometry [1.1011268090482573]
画像に基づく3次元再構成のために,多視点幾何アルゴリズムとニューラルレージアンス場(NeRF)を組み合わせたMVG-NeRF(MVG-NeRF)というフレームワークを提案する。
NeRFは暗黙の3D表現の分野に革命をもたらした。
論文 参考訳(メタデータ) (2022-10-24T08:53:35Z) - StylizedNeRF: Consistent 3D Scene Stylization as Stylized NeRF via 2D-3D
Mutual Learning [50.65015652968839]
3Dシーンのスタイリングは、任意の新しい視点からシーンのスタイリング画像を生成することを目的としている。
最近提案されたNeRF(Near Raddiance Field)により,我々は一貫した方法で3Dシーンを表現できる。
本研究では,2次元画像スタイリゼーションネットワークとNeRFを組み合わせた3次元シーンスタイリゼーションのための新しい相互学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-24T16:29:50Z) - NeuralReshaper: Single-image Human-body Retouching with Deep Neural
Networks [50.40798258968408]
本稿では,深部生成ネットワークを用いた単一画像における人体の意味的再構成手法であるNeuralReshaperを提案する。
われわれのアプローチは、まずパラメトリックな3次元人間モデルと元の人間の画像とを適合させるフィッティング・セイン・リフォーム・パイプラインに従う。
ペアデータが存在しないデータ不足に対処するために,ネットワークをトレーニングするための新たな自己教師型戦略を導入する。
論文 参考訳(メタデータ) (2022-03-20T09:02:13Z) - Template NeRF: Towards Modeling Dense Shape Correspondences from
Category-Specific Object Images [4.662583832063716]
本研究では, テンプレートを用いたNeRF(Near Raddiance Field)を, 外観や形状をモデル化するためのテンプレートとして提示する。
多視点画像のみから同一カテゴリのオブジェクト間の密な形状対応を同時に生成する。
学習された高密度対応は、キーポイント検出、部分分割、テクスチャ転送など、様々な画像ベースのタスクに容易に利用できる。
論文 参考訳(メタデータ) (2021-11-08T02:16:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。