論文の概要: Nearest Neighbor Representations of Neurons
- arxiv url: http://arxiv.org/abs/2402.08748v2
- Date: Thu, 9 May 2024 18:33:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 18:15:12.845063
- Title: Nearest Neighbor Representations of Neurons
- Title(参考訳): ニューロンの最も近い隣の表現
- Authors: Kordag Mehmet Kilic, Jin Sima, Jehoshua Bruck,
- Abstract要約: Nearest Neighbor(NN)表現は、脳にインスパイアされた新しい計算モデルである。
NN表現を用いたニューロン(閾値関数)の表現の複雑さについて検討した。
- 参考スコア(独自算出の注目度): 12.221087476416056
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Nearest Neighbor (NN) Representation is an emerging computational model that is inspired by the brain. We study the complexity of representing a neuron (threshold function) using the NN representations. It is known that two anchors (the points to which NN is computed) are sufficient for a NN representation of a threshold function, however, the resolution (the maximum number of bits required for the entries of an anchor) is $O(n\log{n})$. In this work, the trade-off between the number of anchors and the resolution of a NN representation of threshold functions is investigated. We prove that the well-known threshold functions EQUALITY, COMPARISON, and ODD-MAX-BIT, which require 2 or 3 anchors and resolution of $O(n)$, can be represented by polynomially large number of anchors in $n$ and $O(\log{n})$ resolution. We conjecture that for all threshold functions, there are NN representations with polynomially large size and logarithmic resolution in $n$.
- Abstract(参考訳): Nearest Neighbor(NN)表現は、脳にインスパイアされた新しい計算モデルである。
NN表現を用いたニューロン(閾値関数)の表現の複雑さについて検討した。
2つのアンカー(NNが計算される点)が閾値関数のNN表現に十分であることが知られているが、解像度(アンカーのエントリに必要な最大ビット数)は$O(n\log{n})$である。
本研究では,アンカー数と閾値関数のNN表現の分解能のトレードオフについて検討する。
良く知られたしきい値関数 EQUALITY, COMPARISON, ODD-MAX-BIT は 2 または 3 個のアンカーを必要とし、$O(n)$ の分解能は$n$ と $O(\log{n})$ の多項式的に多数のアンカーで表すことができる。
すべてのしきい値関数に対して、多項式的に大きなサイズと対数分解能を持つNN表現が$n$で存在すると推測する。
関連論文リスト
- Nearest Neighbor Representations of Neural Circuits [12.221087476416056]
Nearest Neighbor (NN)表現は計算の新しいアプローチである。
我々は、そのNN表現に対して、ビット数に明示的な境界を持つ明示的な構成を提供する。
例えば、凸多面体のNN表現(閾値ゲートのAND)、IP2、閾値ゲートのOR、線形または正確な決定リストなどがある。
論文 参考訳(メタデータ) (2024-02-13T19:38:01Z) - Neural Networks for Singular Perturbations [0.0]
特異摂動楕円型二点境界値問題のモデルクラスの解集合に対する表現率境界を証明した。
我々は, NNサイズの観点から, ソボレフノルムの表現速度境界を定めている。
論文 参考訳(メタデータ) (2024-01-12T16:02:18Z) - Versatile Neural Processes for Learning Implicit Neural Representations [57.090658265140384]
本稿では,近似関数の能力を大幅に向上させるVersatile Neural Processs (VNP)を提案する。
具体的には、より少ない情報的コンテキストトークンを生成するボトルネックエンコーダを導入し、高い計算コストを軽減した。
提案したVNPが1D, 2D, 3D信号を含む様々なタスクに対して有効であることを示す。
論文 参考訳(メタデータ) (2023-01-21T04:08:46Z) - Shallow neural network representation of polynomials [91.3755431537592]
d+1+sum_r=2Rbinomr+d-1d-1[binomr+d-1d-1d-1[binomr+d-1d-1d-1]binomr+d-1d-1d-1[binomr+d-1d-1d-1]binomr+d-1d-1d-1]
論文 参考訳(メタデータ) (2022-08-17T08:14:52Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - Counting Substructures with Higher-Order Graph Neural Networks:
Possibility and Impossibility Results [58.277290855841976]
グラフニューラルネットワーク(GNN)の計算コストと表現力のトレードオフについて検討する。
新しいモデルでは、$k$のサブグラフをカウントでき、低次GNNの既知の制限を克服できることを示す。
いくつかの場合において、提案アルゴリズムは既存の高階$k$-GNNに比べて計算量を大幅に削減することができる。
論文 参考訳(メタデータ) (2020-12-06T03:42:54Z) - Approximating smooth functions by deep neural networks with sigmoid
activation function [0.0]
我々は,シグモイド活性化機能を持つディープニューラルネットワーク(DNN)のパワーについて検討した。
固定深度と幅が$Md$で近似レートが$M-2p$であることを示す。
論文 参考訳(メタデータ) (2020-10-08T07:29:31Z) - Deep Polynomial Neural Networks [77.70761658507507]
$Pi$Netsは拡張に基づいた関数近似の新しいクラスである。
$Pi$Netsは、画像生成、顔検証、および3Dメッシュ表現学習という3つの困難なタスクで、最先端の結果を生成する。
論文 参考訳(メタデータ) (2020-06-20T16:23:32Z) - A Corrective View of Neural Networks: Representation, Memorization and
Learning [26.87238691716307]
我々はニューラルネットワーク近似の補正機構を開発する。
ランダム・フィーチャー・レギュレーション(RF)における2層ニューラルネットワークは任意のラベルを記憶できることを示す。
また、3層ニューラルネットワークについても検討し、その補正機構がスムーズなラジアル関数に対する高速な表現率をもたらすことを示す。
論文 参考訳(メタデータ) (2020-02-01T20:51:09Z) - Neural Arithmetic Units [84.65228064780744]
ニューラルネットワークは複雑な関数を近似することができるが、実数に対して正確な算術演算を行うのに苦労する。
ニューラルネットワークコンポーネントとして、正確な加算と減算を学習可能なニューラル加算ユニット(NAU)と、ベクトルのサブセットを乗算可能なニューラル乗算ユニット(NMU)がある。
提案したユニットNAUとNMUは、従来のニューラルネットワークユニットと比較して、より一貫して収束し、パラメータを少なくし、より速く学習し、より大きな隠れたサイズに収束し、スパースと意味のある重みを得、負の値と小さな値に外挿することができる。
論文 参考訳(メタデータ) (2020-01-14T19:35:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。