Enhance Graph Alignment for Large Language Models
- URL: http://arxiv.org/abs/2410.11370v1
- Date: Tue, 15 Oct 2024 07:50:34 GMT
- Title: Enhance Graph Alignment for Large Language Models
- Authors: Haitong Luo, Xuying Meng, Suhang Wang, Tianxiang Zhao, Fali Wang, Hanyun Cao, Yujun Zhang,
- Abstract summary: Graph-to-token approaches are popular in enabling Large Language Models to process graph information.
Existing methods have a misalignment between self-supervised tasks and supervised downstream tasks.
We propose Graph Alignment Large Language Models (GALLM) to benefit from aligned task templates.
- Score: 33.96082485852042
- License:
- Abstract: Graph-structured data is prevalent in the real world. Recently, due to the powerful emergent capabilities, Large Language Models (LLMs) have shown promising performance in modeling graphs. The key to effectively applying LLMs on graphs is converting graph data into a format LLMs can comprehend. Graph-to-token approaches are popular in enabling LLMs to process graph information. They transform graphs into sequences of tokens and align them with text tokens through instruction tuning, where self-supervised instruction tuning helps LLMs acquire general knowledge about graphs, and supervised fine-tuning specializes LLMs for the downstream tasks on graphs. Despite their initial success, we find that existing methods have a misalignment between self-supervised tasks and supervised downstream tasks, resulting in negative transfer from self-supervised fine-tuning to downstream tasks. To address these issues, we propose Graph Alignment Large Language Models (GALLM) to benefit from aligned task templates. In the self-supervised tuning stage, we introduce a novel text matching task using templates aligned with downstream tasks. In the task-specific tuning stage, we propose two category prompt methods that learn supervision information from additional explanation with further aligned templates. Experimental evaluations on four datasets demonstrate substantial improvements in supervised learning, multi-dataset generalizability, and particularly in zero-shot capability, highlighting the model's potential as a graph foundation model.
Related papers
- How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
This work introduces a benchmark to assess large language models' capabilities in graph pattern tasks.
We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions.
Our benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models.
arXiv Detail & Related papers (2024-10-04T04:48:33Z) - Can Large Language Models Analyze Graphs like Professionals? A Benchmark, Datasets and Models [90.98855064914379]
We introduce ProGraph, a benchmark for large language models (LLMs) to process graphs.
Our findings reveal that the performance of current LLMs is unsatisfactory, with the best model achieving only 36% accuracy.
We propose LLM4Graph datasets, which include crawled documents and auto-generated codes based on 6 widely used graph libraries.
arXiv Detail & Related papers (2024-09-29T11:38:45Z) - LLMs as Zero-shot Graph Learners: Alignment of GNN Representations with LLM Token Embeddings [7.302176015732192]
We introduce a novel framework named Token Embedding-Aligned Graph Language Model (TEA-GLM)
We pretrain a GNN, aligning its representations with token embeddings of an LLM.
We then train a linear projector that transforms the GNN's representations into a fixed number of graph token embeddings.
arXiv Detail & Related papers (2024-08-25T04:32:45Z) - Investigating Instruction Tuning Large Language Models on Graphs [37.20541711360419]
There's growing interest in applying Large Language Models (LLMs) to graph-related tasks.
This study delves into the capabilities of instruction-following LLMs for engaging with real-world graphs.
arXiv Detail & Related papers (2024-08-10T06:54:35Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
We introduce Graph-aware.
Efficient Fine-Tuning - GPEFT, a novel approach for efficient graph representation learning.
We use a graph neural network (GNN) to encode structural information from neighboring nodes into a graph prompt.
We validate our approach through comprehensive experiments conducted on 8 different text-rich graphs, observing an average improvement of 2% in hit@1 and Mean Reciprocal Rank (MRR) in link prediction evaluations.
arXiv Detail & Related papers (2024-04-28T18:36:59Z) - Exploring the Potential of Large Language Models in Graph Generation [51.046188600990014]
Graph generation requires large language models (LLMs) to generate graphs with given properties.
This paper explores the abilities of LLMs for graph generation with systematical task designs and experiments.
Our evaluations demonstrate that LLMs, particularly GPT-4, exhibit preliminary abilities in graph generation tasks.
arXiv Detail & Related papers (2024-03-21T12:37:54Z) - MuseGraph: Graph-oriented Instruction Tuning of Large Language Models
for Generic Graph Mining [41.19687587548107]
Graph Neural Networks (GNNs) need to be re-trained every time when applied to different graph tasks and datasets.
We propose a novel framework MuseGraph, which seamlessly integrates the strengths of GNNs and Large Language Models (LLMs)
Our experimental results demonstrate significant improvements in different graph tasks.
arXiv Detail & Related papers (2024-03-02T09:27:32Z) - InstructGraph: Boosting Large Language Models via Graph-centric
Instruction Tuning and Preference Alignment [30.136514352238795]
InstructGraph is a framework that empowers large language models with the abilities of graph reasoning and generation.
We show that InstructGraph can achieve the best performance and outperform GPT-4 and LLaMA2 by more than 13% and 38%, respectively.
arXiv Detail & Related papers (2024-02-13T20:47:17Z) - LLaGA: Large Language and Graph Assistant [73.71990472543027]
Large Language and Graph Assistant (LLaGA) is an innovative model to handle the complexities of graph-structured data.
LLaGA excels in versatility, generalizability and interpretability, allowing it to perform consistently well across different datasets and tasks.
Our experiments show that LLaGA delivers outstanding performance across four datasets and three tasks using one single model.
arXiv Detail & Related papers (2024-02-13T02:03:26Z) - GraphGPT: Graph Instruction Tuning for Large Language Models [27.036935149004726]
Graph Neural Networks (GNNs) have evolved to understand graph structures.
To enhance robustness, self-supervised learning (SSL) has become a vital tool for data augmentation.
Our research tackles this by advancing graph model generalization in zero-shot learning environments.
arXiv Detail & Related papers (2023-10-19T06:17:46Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
Large language models (LLMs) have emerged as frontrunners, showcasing unparalleled prowess in diverse applications.
Merging the capabilities of LLMs with graph-structured data has been a topic of keen interest.
This paper bifurcates such integrations into two predominant categories.
arXiv Detail & Related papers (2023-10-09T07:59:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.