論文の概要: Seagull: Privacy preserving network verification system
- arxiv url: http://arxiv.org/abs/2402.08956v1
- Date: Wed, 14 Feb 2024 05:56:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 11:19:24.072564
- Title: Seagull: Privacy preserving network verification system
- Title(参考訳): Seagull: プライバシ保護ネットワーク検証システム
- Authors: Jaber Daneshamooz, Melody Yu, Sucheer Maddury,
- Abstract要約: 本稿では,BGPプロトコルが管理するインターネットバックボーンの構成の正当性を検証するための新しい手法を提案する。
提案したソリューションはスケーラビリティの懸念に効果的に対処するだけでなく、堅牢なプライバシフレームワークも確立しています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The current routing protocol used in the internet backbone is based on manual configuration, making it susceptible to errors. To mitigate these configuration-related issues, it becomes imperative to validate the accuracy and convergence of the algorithm, ensuring a seamless operation devoid of problems. However, the process of network verification faces challenges related to privacy and scalability. This paper addresses these challenges by introducing a novel approach: leveraging privacy-preserving computation, specifically multiparty computation (MPC), to verify the correctness of configurations in the internet backbone, governed by the BGP protocol. Not only does our proposed solution effectively address scalability concerns, but it also establishes a robust privacy framework. Through rigorous analysis, we demonstrate that our approach maintains privacy by not disclosing any information beyond the query result, thus providing a comprehensive and secure solution to the intricacies associated with routing protocol verification in large-scale networks.
- Abstract(参考訳): インターネットバックボーンで使用されている現在のルーティングプロトコルは手動による設定に基づいており、エラーの影響を受けやすい。
これらの構成に関連した問題を緩和するため、アルゴリズムの精度と収束性を検証することが必須となり、問題のないシームレスな操作が保証される。
しかし、ネットワーク検証のプロセスは、プライバシとスケーラビリティに関する課題に直面している。
本稿では,BGPプロトコルが管理するインターネットバックボーンの構成の正しさを検証するために,プライバシ保護計算,特にマルチパーティ計算(MPC)を活用するという新たなアプローチを導入することで,これらの課題に対処する。
提案したソリューションはスケーラビリティの懸念に効果的に対処するだけでなく、堅牢なプライバシフレームワークも確立しています。
厳密な分析により,提案手法はクエリ結果以外の情報を開示せず,大規模ネットワークにおけるルーティングプロトコルの検証に係わる複雑さに対する包括的かつセキュアな解決策を提供する。
関連論文リスト
- Collaborative Inference over Wireless Channels with Feature Differential Privacy [57.68286389879283]
複数の無線エッジデバイス間の協調推論は、人工知能(AI)アプリケーションを大幅に強化する可能性がある。
抽出された特徴を抽出することは、プロセス中に機密性の高い個人情報が暴露されるため、重大なプライバシーリスクをもたらす。
本稿では,ネットワーク内の各エッジデバイスが抽出された機能のプライバシを保護し,それらを中央サーバに送信して推論を行う,新たなプライバシ保存協調推論機構を提案する。
論文 参考訳(メタデータ) (2024-10-25T18:11:02Z) - Decentralized Federated Anomaly Detection in Smart Grids: A P2P Gossip Approach [0.44328715570014865]
本稿では,ランダムウォーク(Random Walk)とエピデミック(Epidemic)という2つの主要なゴシッププロトコルに基づく分散化フェデレーション異常検出手法を提案する。
従来のフェデレートラーニングに比べて,トレーニング時間の35%が顕著に改善されている。
論文 参考訳(メタデータ) (2024-07-20T10:45:06Z) - A Privacy-Preserving Graph Encryption Scheme Based on Oblivious RAM [0.0]
本稿では,アクセスパターンとクエリパターンの漏洩を緩和する新しいグラフ暗号化手法を提案する。
提案手法は,(1)暗号化されたグラフで表現された敵が,基盤となるグラフに関する情報に従わないことを保証し,(2)アクセスパターンを隠蔽して問合せ不能を解消する,という2つのキーとなるセキュリティ目標を定めている。
論文 参考訳(メタデータ) (2024-05-29T16:47:38Z) - KiNETGAN: Enabling Distributed Network Intrusion Detection through Knowledge-Infused Synthetic Data Generation [0.0]
合成ネットワーク活動データ(KiNETGAN)を生成するための知識注入型ジェネレーティブ・アドバイサル・ネットワークを提案する。
弊社のアプローチは、プライバシー問題に対処しながら、分散侵入検知のレジリエンスを高める。
論文 参考訳(メタデータ) (2024-05-26T08:02:02Z) - Private Online Community Detection for Censored Block Models [60.039026645807326]
検閲ブロックモデル(CBM)を用いた動的コミュニティにおけるプライベートオンライン変更検出問題について検討する。
ユーザのプライバシーを維持しつつ,コミュニティ構造の変化を識別するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-09T12:35:57Z) - Secure Routing for Mobile Ad hoc Networks [2.965855310793378]
本稿では,MANETネットワークにおける悪意行動の影響を緩和する経路探索プロトコルを提案する。
我々のプロトコルは、生成された、妥協された、あるいは再生されたルート応答が拒否されるか、クエリノードに決して届かないことを保証します。
このスキームは、多数の非凝固ノードの存在下で堅牢である。
論文 参考訳(メタデータ) (2024-03-01T09:50:00Z) - Adversarial Client Detection via Non-parametric Subspace Monitoring in
the Internet of Federated Things [3.280202415151067]
Internet of Federated Things (IoFT)は、フェデレート学習をバックボーンとする相互接続システムのネットワークである。
本稿では、敵攻撃問題に対処する効果的な非パラメトリックアプローチFedRRを提案する。
提案手法は,敵のクライアントを正確に検出し,攻撃が起こらないシナリオ下での誤報率を制御する。
論文 参考訳(メタデータ) (2023-10-02T18:25:02Z) - Robust and efficient verification of graph states in blind
measurement-based quantum computation [52.70359447203418]
Blind Quantum Computing (BQC) は、クライアントのプライバシを保護するセキュアな量子計算手法である。
資源グラフ状態が敵のシナリオで正確に準備されているかどうかを検証することは重要である。
本稿では,任意の局所次元を持つ任意のグラフ状態を検証するための,堅牢で効率的なプロトコルを提案する。
論文 参考訳(メタデータ) (2023-05-18T06:24:45Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
垂直ロジスティック回帰(VLR)をミニバッチ降下勾配で訓練した。
我々は、オープンソースのフェデレーション学習フレームワークのクラスにおいて、VLRの包括的で厳密なプライバシー分析を提供する。
論文 参考訳(メタデータ) (2022-07-19T05:47:30Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
本稿では,フェデレート学習に基づくGated Recurrent Unit Neural Network Algorithm (FedGRU) というプライバシ保護機械学習手法を提案する。
FedGRUは、現在の集中学習方法と異なり、安全なパラメータアグリゲーション機構を通じて、普遍的な学習モデルを更新する。
FedGRUの予測精度は、先進的なディープラーニングモデルよりも90.96%高い。
論文 参考訳(メタデータ) (2020-03-19T13:07:49Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
総生産ネットワーク(SPN)のプライバシ保護のためのフレームワークを提案する。
CryptoSPNは、中規模のSPNに対して秒の順序で高効率で正確な推論を行う。
論文 参考訳(メタデータ) (2020-02-03T14:49:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。