論文の概要: SafeDecoding: Defending against Jailbreak Attacks via Safety-Aware
Decoding
- arxiv url: http://arxiv.org/abs/2402.08983v1
- Date: Wed, 14 Feb 2024 06:54:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-15 16:30:31.886581
- Title: SafeDecoding: Defending against Jailbreak Attacks via Safety-Aware
Decoding
- Title(参考訳): safedecoding:safe-aware decodingによるジェイルブレイク攻撃に対する防御
- Authors: Zhangchen Xu, Fengqing Jiang, Luyao Niu, Jinyuan Jia, Bill Yuchen Lin,
Radha Poovendran
- Abstract要約: 我々は,大規模言語モデル(LLM)の安全性を意識したデコーディング戦略であるSafeDecodingを導入し,ユーザクエリに対する有用かつ無害な応答を生成する。
この結果から,SafeDecodingは,ユーザクエリに対する応答の利便性を損なうことなく,攻撃成功率やジェイルブレイク攻撃の有害性を著しく低下させることがわかった。
- 参考スコア(独自算出の注目度): 37.88220351224544
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As large language models (LLMs) become increasingly integrated into
real-world applications such as code generation and chatbot assistance,
extensive efforts have been made to align LLM behavior with human values,
including safety. Jailbreak attacks, aiming to provoke unintended and unsafe
behaviors from LLMs, remain a significant/leading LLM safety threat. In this
paper, we aim to defend LLMs against jailbreak attacks by introducing
SafeDecoding, a safety-aware decoding strategy for LLMs to generate helpful and
harmless responses to user queries. Our insight in developing SafeDecoding is
based on the observation that, even though probabilities of tokens representing
harmful contents outweigh those representing harmless responses, safety
disclaimers still appear among the top tokens after sorting tokens by
probability in descending order. This allows us to mitigate jailbreak attacks
by identifying safety disclaimers and amplifying their token probabilities,
while simultaneously attenuating the probabilities of token sequences that are
aligned with the objectives of jailbreak attacks. We perform extensive
experiments on five LLMs using six state-of-the-art jailbreak attacks and four
benchmark datasets. Our results show that SafeDecoding significantly reduces
the attack success rate and harmfulness of jailbreak attacks without
compromising the helpfulness of responses to benign user queries. SafeDecoding
outperforms six defense methods.
- Abstract(参考訳): 大規模言語モデル(LLM)がコード生成やチャットボット支援といった現実のアプリケーションに統合されるにつれて、安全性を含むLLMの振る舞いを人間の価値と整合させる取り組みが盛んに行われている。
ジェイルブレイク攻撃は、LLMから意図しない、安全でない行動を誘発することを目的としており、LLMの安全性を脅かしている。
本稿では, LLMの安全を意識した復号化戦略であるSafeDecodingを導入して, ユーザクエリに対する有用な無害な応答を生成することで, ジェイルブレイク攻撃に対するLLMの防御を目指す。
セーフデコーディングの考え方は,有害な内容を表すトークンの確率が有害な応答を示すトークンよりも高いにもかかわらず,下位順の確率でトークンをソートした後も,安全宣言者がトップトークンに現れるという観察に基づいている。
これにより、脱獄者を特定し、トークンの確率を増幅することで脱獄攻撃を軽減し、同時に脱獄攻撃の目的と一致したトークンシーケンスの確率を弱めることができる。
6つの最先端脱獄攻撃と4つのベンチマークデータセットを用いて、5つのllmを広範囲に実験した。
この結果から,SafeDecodingは,ユーザクエリに対する応答の利便性を損なうことなく,攻撃成功率やジェイルブレイク攻撃の有害性を著しく低下させることがわかった。
SafeDecodingは6つの防御方法より優れている。
関連論文リスト
- SQL Injection Jailbreak: a structural disaster of large language models [71.55108680517422]
LLMによる入力プロンプトの構築を利用して、ユーザプロンプトにジェイルブレイク情報を注入する新しいジェイルブレイク手法を提案する。
提案手法は,AdvBench の文脈でよく知られた5つのオープンソース LLM に対する攻撃成功率を約100% 達成する。
論文 参考訳(メタデータ) (2024-11-03T13:36:34Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
そこで本稿では, ガーブレッドの逆数プロンプトを, 一貫性のある, 可読性のある自然言語の逆数プロンプトに"翻訳"する手法を提案する。
また、jailbreakプロンプトの効果的な設計を発見し、jailbreak攻撃の理解を深めるための新しいアプローチも提供する。
本稿では,AdvBench上でのLlama-2-Chatモデルに対する攻撃成功率は90%以上である。
論文 参考訳(メタデータ) (2024-10-15T06:31:04Z) - HSF: Defending against Jailbreak Attacks with Hidden State Filtering [14.031010511732008]
隠れ状態フィルタ(HSF)に基づくジェイルブレイク攻撃防御戦略を提案する。
HSFは、推論プロセスが始まる前に、モデルが相手の入力をプリエンプティブに識別し、拒否することを可能にする。
不正なユーザクエリに対する応答を最小限に抑えながら、Jailbreak攻撃の成功率を大幅に低下させる。
論文 参考訳(メタデータ) (2024-08-31T06:50:07Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
大きな言語モデル(LLM)は、安全クリティカルなアプリケーションにますますデプロイされている。
LLMは、悪質なプロンプトを慎重に作り、ポリシーに違反するコンテンツを生成することで、まだジェイルブレイクされる可能性がある。
本稿では,プロンプトレベルのジェイルブレイクを用いて有害な命令を隠蔽し,グラデーションベースの攻撃で攻撃成功率を高め,テンプレートベースのコネクタを介して2種類のジェイルブレイク攻撃を接続する新しいEnJa攻撃を提案する。
論文 参考訳(メタデータ) (2024-08-07T07:46:08Z) - Virtual Context: Enhancing Jailbreak Attacks with Special Token Injection [54.05862550647966]
本稿では、以前LLMセキュリティで見過ごされていた特別なトークンを活用して、ジェイルブレイク攻撃を改善する仮想コンテキストを提案する。
総合的な評価によると、仮想コンテキストによるジェイルブレイク攻撃は、4つの広く使われているジェイルブレイク手法の成功率を約40%向上させることができる。
論文 参考訳(メタデータ) (2024-06-28T11:35:54Z) - Enhancing Jailbreak Attack Against Large Language Models through Silent Tokens [22.24239212756129]
既存のジェイルブレイク攻撃では、人間の専門家か、複雑なアルゴリズムを使ってプロンプトを作らなければならない。
eosトークンのみを活用する単純な攻撃であるBOOSTを導入する。
LLMがジェイルブレイク攻撃に対して脆弱であることが判明し、強力な安全アライメントアプローチの開発が動機となった。
論文 参考訳(メタデータ) (2024-05-31T07:41:03Z) - Comprehensive Assessment of Jailbreak Attacks Against LLMs [28.58973312098698]
4つのカテゴリから13の最先端ジェイルブレイク法,16の違反カテゴリから160の質問,6つの人気のあるLDMについて検討した。
実験の結果, 最適化されたジェイルブレイクは高い攻撃成功率を確実に達成することが示された。
攻撃性能と効率のトレードオフについて論じるとともに、脱獄プロンプトの転送性は依然として維持可能であることを示す。
論文 参考訳(メタデータ) (2024-02-08T13:42:50Z) - Weak-to-Strong Jailbreaking on Large Language Models [96.50953637783581]
大規模言語モデル(LLM)は、ジェイルブレイク攻撃に対して脆弱である。
既存のジェイルブレイク法は計算コストがかかる。
我々は、弱々しく強固な脱獄攻撃を提案する。
論文 参考訳(メタデータ) (2024-01-30T18:48:37Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
大きな言語モデル(LLM)は有用で安全な応答を提供するように設計されている。
ジェイルブレイク」と呼ばれる 敵のプロンプトは 保護を回避できる
有効なジェイルブレイクプロンプトを生成するためにLLM自体を活用する自動フレームワークであるReNeLLMを提案する。
論文 参考訳(メタデータ) (2023-11-14T16:02:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。