論文の概要: Cross-Temporal Forecast Reconciliation at Digital Platforms with Machine Learning
- arxiv url: http://arxiv.org/abs/2402.09033v2
- Date: Fri, 31 May 2024 14:44:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 20:02:19.363103
- Title: Cross-Temporal Forecast Reconciliation at Digital Platforms with Machine Learning
- Title(参考訳): 機械学習を用いたデジタルプラットフォームにおける時間横断予測再調整
- Authors: Jeroen Rombouts, Marie Ternes, Ines Wilms,
- Abstract要約: 非線形階層的予測整合法を導入し,時間的相互整合予測を直接的かつ自動的に生成する。
ヨーロッパの主要なオンデマンドデリバリプラットフォームと、ニューヨーク市の自転車共有システムから、独自の大規模ストリーミングデータセットを試験的にテストしています。
- 参考スコア(独自算出の注目度): 1.8638865257327277
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Platform businesses operate on a digital core and their decision making requires high-dimensional accurate forecast streams at different levels of cross-sectional (e.g., geographical regions) and temporal aggregation (e.g., minutes to days). It also necessitates coherent forecasts across all levels of the hierarchy to ensure aligned decision making across different planning units such as pricing, product, controlling and strategy. Given that platform data streams feature complex characteristics and interdependencies, we introduce a non-linear hierarchical forecast reconciliation method that produces cross-temporal reconciled forecasts in a direct and automated way through the use of popular machine learning methods. The method is sufficiently fast to allow forecast-based high-frequency decision making that platforms require. We empirically test our framework on unique, large-scale streaming datasets from a leading on-demand delivery platform in Europe and a bicycle sharing system in New York City.
- Abstract(参考訳): プラットフォームビジネスはデジタルコア上で運用され、意思決定には、横断的(地理的な地域など)と時間的集約(例えば、数分から数日)の異なるレベルで、高次元の正確な予測ストリームが必要である。
また、価格、製品、制御、戦略など、さまざまな計画単位に整合した意思決定を確実にするために、階層のすべてのレベルにわたる一貫性のある予測が必要である。
プラットフォームデータストリームが複雑な特徴と相互依存を特徴とすることを考慮し,一般的な機械学習手法を用いて,時間的相互整合予測を直接的かつ自動的に生成する非線形階層的予測整合手法を提案する。
この手法は、プラットフォームが必要とする予測ベースの高周波決定を可能にするのに十分高速である。
ヨーロッパの主要なオンデマンドデリバリプラットフォームと、ニューヨーク市の自転車共有システムから、独自の大規模ストリーミングデータセットを試験的にテストしています。
関連論文リスト
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - Advancing Enterprise Spatio-Temporal Forecasting Applications: Data Mining Meets Instruction Tuning of Language Models For Multi-modal Time Series Analysis in Low-Resource Settings [0.0]
パティオ時間予測は輸送、物流、サプライチェーン管理において重要である。
本稿では,従来の予測手法の強みと小言語モデルの命令チューニングを融合した動的マルチモーダル手法を提案する。
我々のフレームワークは、推論速度とデータプライバシ/セキュリティを維持しながら、計算とメモリの要求を低減したオンプレミスのカスタマイズを可能にする。
論文 参考訳(メタデータ) (2024-08-24T16:32:58Z) - RPMixer: Shaking Up Time Series Forecasting with Random Projections for Large Spatial-Temporal Data [33.0546525587517]
RPMixer と呼ばれる全MLP時系列予測アーキテクチャを提案する。
提案手法は,各ブロックがアンサンブルモデルにおいてベース学習者のように振る舞う深層ニューラルネットワークのアンサンブル的挙動に乗じる。
論文 参考訳(メタデータ) (2024-02-16T07:28:59Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
高速かつ正確なモデルアグリゲーションを実現するために,クラウド無線アクセスネットワーク(Cloud-RAN)ベースの垂直FLシステムを提案する。
アップリンクとダウンリンクの両方の伝送を考慮した垂直FLアルゴリズムの収束挙動を特徴付ける。
我々は,連続凸近似と代替凸探索に基づくシステム最適化アルゴリズムを開発した,連系トランシーバとフロントホール量子化設計によるシステム最適化フレームワークを構築した。
論文 参考訳(メタデータ) (2023-05-04T09:26:03Z) - Decentralized Training of Foundation Models in Heterogeneous
Environments [77.47261769795992]
GPT-3 や PaLM のようなトレーニング基盤モデルは、非常に高価である。
ヘテロジニアスネットワーク上での分散型システムにおけるモデル並列化を用いた大規模基盤モデルのトレーニングに関する最初の研究について述べる。
論文 参考訳(メタデータ) (2022-06-02T20:19:51Z) - Tailored Learning-Based Scheduling for Kubernetes-Oriented Edge-Cloud
System [54.588242387136376]
エッジクラウドシステムのための学習ベースのスケジューリングフレームワークkaisを紹介する。
まず,分散した要求ディスパッチに対応するために,協調型マルチエージェントアクタ-クリティックアルゴリズムを設計する。
次に,多種多様なシステムスケールと構造について,グラフニューラルネットワークを用いてシステム状態情報を埋め込む。
第3に、リクエストディスパッチとサービスオーケストレーションを調和させる2段階のスケジューリングメカニズムを採用します。
論文 参考訳(メタデータ) (2021-01-17T03:45:25Z) - A Trainable Reconciliation Method for Hierarchical Time-Series [0.0]
エンコーダデコーダニューラルネットワークに基づく,新しい汎用的,柔軟かつ容易に実装可能な調整戦略を提案する。
実世界の4つのデータセット上で本手法をテストすることにより,和解設定における既存手法の性能を継続的に到達または超えることを示す。
論文 参考訳(メタデータ) (2021-01-05T03:21:07Z) - Multi-scale Interaction for Real-time LiDAR Data Segmentation on an
Embedded Platform [62.91011959772665]
LiDARデータのリアルタイムセマンティックセグメンテーションは、自動運転車にとって不可欠である。
ポイントクラウド上で直接動作する現在のアプローチでは、複雑な空間集約操作を使用する。
本稿では,マルチスケールインタラクションネットワーク(MINet)と呼ばれるプロジェクションベースの手法を提案する。
論文 参考訳(メタデータ) (2020-08-20T19:06:11Z) - A Multi-Phase Approach for Product Hierarchy Forecasting in Supply Chain
Management: Application to MonarchFx Inc [9.290757451344673]
本稿では,階層的サプライチェーンの予測を改善するために,新しい多相階層型アプローチを提案する。
提案手法を用いた予測精度は82-90%向上した。
論文 参考訳(メタデータ) (2020-06-16T05:26:11Z) - A machine learning approach for forecasting hierarchical time series [4.157415305926584]
階層時系列を予測するための機械学習手法を提案する。
予測整合は予測を調整し、階層をまたいで一貫性を持たせるプロセスである。
我々は、階層構造をキャプチャする情報を抽出するディープニューラルネットワークの能力を利用する。
論文 参考訳(メタデータ) (2020-05-31T22:26:16Z) - Combining Machine Learning with Knowledge-Based Modeling for Scalable
Forecasting and Subgrid-Scale Closure of Large, Complex, Spatiotemporal
Systems [48.7576911714538]
我々は、過去のデータを予測に組み込む上で、機械学習を必須のツールとして活用しようと試みる。
i)並列機械学習予測手法と(ii)ハイブリッド手法の2つの手法を組み合わせて,知識ベースコンポーネントと機械学習ベースコンポーネントからなる複合予測システムを提案する。
i) と (ii) を組み合わせることで、非常に大規模なシステムに優れた性能を与えることができるだけでなく、並列機械学習コンポーネントを訓練するのに必要となる時系列データの長さが、並列化なしで必要なものよりも劇的に少ないことを実証した。
論文 参考訳(メタデータ) (2020-02-10T23:21:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。