Generalized Portrait Quality Assessment
- URL: http://arxiv.org/abs/2402.09178v1
- Date: Wed, 14 Feb 2024 13:47:18 GMT
- Title: Generalized Portrait Quality Assessment
- Authors: Nicolas Chahine, Sira Ferradans, Javier Vazquez-Corral, Jean Ponce
- Abstract summary: This paper presents a learning-based approach to portrait quality assessment (PQA)
The proposed approach is validated by extensive experiments on the PIQ23 benchmark.
The source code of FHIQA will be made publicly available on the PIQ23 GitHub repository.
- Score: 26.8378202089832
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Automated and robust portrait quality assessment (PQA) is of paramount
importance in high-impact applications such as smartphone photography. This
paper presents FHIQA, a learning-based approach to PQA that introduces a simple
but effective quality score rescaling method based on image semantics, to
enhance the precision of fine-grained image quality metrics while ensuring
robust generalization to various scene settings beyond the training dataset.
The proposed approach is validated by extensive experiments on the PIQ23
benchmark and comparisons with the current state of the art. The source code of
FHIQA will be made publicly available on the PIQ23 GitHub repository at
https://github.com/DXOMARK-Research/PIQ2023.
Related papers
- DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild [54.139923409101044]
Blind image quality assessment (IQA) in the wild presents significant challenges.
Given the difficulty in collecting large-scale training data, leveraging limited data to develop a model with strong generalization remains an open problem.
Motivated by the robust image perception capabilities of pre-trained text-to-image (T2I) diffusion models, we propose a novel IQA method, diffusion priors-based IQA.
arXiv Detail & Related papers (2024-05-30T12:32:35Z) - Adaptive Image Quality Assessment via Teaching Large Multimodal Model to Compare [99.57567498494448]
We introduce Compare2Score, an all-around LMM-based no-reference IQA model.
During training, we generate scaled-up comparative instructions by comparing images from the same IQA dataset.
Experiments on nine IQA datasets validate that the Compare2Score effectively bridges text-defined comparative levels during training.
arXiv Detail & Related papers (2024-05-29T17:26:09Z) - Descriptive Image Quality Assessment in the Wild [25.503311093471076]
VLM-based Image Quality Assessment (IQA) seeks to describe image quality linguistically to align with human expression.
We introduce Depicted image Quality Assessment in the Wild (DepictQA-Wild)
Our method includes a multi-functional IQA task paradigm that encompasses both assessment and comparison tasks, brief and detailed responses, full-reference and non-reference scenarios.
arXiv Detail & Related papers (2024-05-29T07:49:15Z) - Dual-Branch Network for Portrait Image Quality Assessment [76.27716058987251]
We introduce a dual-branch network for portrait image quality assessment (PIQA)
We utilize two backbone networks (textiti.e., Swin Transformer-B) to extract the quality-aware features from the entire portrait image and the facial image cropped from it.
We leverage LIQE, an image scene classification and quality assessment model, to capture the quality-aware and scene-specific features as the auxiliary features.
arXiv Detail & Related papers (2024-05-14T12:43:43Z) - Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment [49.36799270585947]
No-reference point cloud quality assessment (NR-PCQA) aims to automatically evaluate the perceptual quality of distorted point clouds without available reference.
We propose a novel contrastive pre-training framework tailored for PCQA (CoPA)
Our method outperforms the state-of-the-art PCQA methods on popular benchmarks.
arXiv Detail & Related papers (2024-03-15T07:16:07Z) - Pairwise Comparisons Are All You Need [22.798716660911833]
Blind image quality assessment (BIQA) approaches often fall short in real-world scenarios due to their reliance on a generic quality standard applied uniformly across diverse images.
This paper introduces PICNIQ, a pairwise comparison framework designed to bypass the limitations of conventional BIQA.
By employing psychometric scaling algorithms, PICNIQ transforms pairwise comparisons into just-objectionable-difference (JOD) quality scores, offering a granular and interpretable measure of image quality.
arXiv Detail & Related papers (2024-03-13T23:43:36Z) - PIQI: Perceptual Image Quality Index based on Ensemble of Gaussian
Process Regression [2.9412539021452715]
Perceptual Image Quality Index (PIQI) is proposed to assess the quality of digital images.
The performance of the PIQI is checked on six benchmark databases and compared with twelve state-of-the-art methods.
arXiv Detail & Related papers (2023-05-16T06:44:17Z) - An Image Quality Assessment Dataset for Portraits [0.9786690381850354]
This paper introduces PIQ23, a portrait-specific IQA dataset of 5116 images of 50 scenarios acquired by 100 smartphones.
The dataset includes individuals of various genders and ethnicities who have given explicit and informed consent for their photographs to be used in public research.
An in-depth statistical analysis of these annotations allows us to evaluate their consistency over PIQ23.
arXiv Detail & Related papers (2023-04-12T11:30:06Z) - No-Reference Image Quality Assessment by Hallucinating Pristine Features [24.35220427707458]
We propose a no-reference (NR) image quality assessment (IQA) method via feature level pseudo-reference (PR) hallucination.
The effectiveness of our proposed method is demonstrated on four popular IQA databases.
arXiv Detail & Related papers (2021-08-09T16:48:34Z) - Task-Specific Normalization for Continual Learning of Blind Image
Quality Models [105.03239956378465]
We present a simple yet effective continual learning method for blind image quality assessment (BIQA)
The key step in our approach is to freeze all convolution filters of a pre-trained deep neural network (DNN) for an explicit promise of stability.
We assign each new IQA dataset (i.e., task) a prediction head, and load the corresponding normalization parameters to produce a quality score.
The final quality estimate is computed by black a weighted summation of predictions from all heads with a lightweight $K$-means gating mechanism.
arXiv Detail & Related papers (2021-07-28T15:21:01Z) - Object-QA: Towards High Reliable Object Quality Assessment [71.71188284059203]
In object recognition applications, object images usually appear with different quality levels.
We propose an effective approach named Object-QA to assess high-reliable quality scores for object images.
arXiv Detail & Related papers (2020-05-27T01:46:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.