論文の概要: Design and Realization of a Benchmarking Testbed for Evaluating
Autonomous Platooning Algorithms
- arxiv url: http://arxiv.org/abs/2402.09233v1
- Date: Wed, 14 Feb 2024 15:22:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-15 15:10:42.903179
- Title: Design and Realization of a Benchmarking Testbed for Evaluating
Autonomous Platooning Algorithms
- Title(参考訳): 自動プラトゥーイングアルゴリズム評価のためのベンチマークテストベッドの設計と実現
- Authors: Michael Shaham, Risha Ranjan, Engin Kirda, Taskin Padir
- Abstract要約: 本稿では,搭載センサーを搭載した1/10スケール車両における小隊アルゴリズムの評価とベンチマークを行うテストベッドを提案する。
線形フィードバックと分散モデル予測制御の2つのバリエーションの3つのアルゴリズムを評価し、それらの結果を典型的な小隊シナリオと比較する。
分散モデル予測制御アルゴリズムは,ハードウェアやシミュレーションにおける線形フィードバックよりも優れていた。
- 参考スコア(独自算出の注目度): 8.440060524215378
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous vehicle platoons present near- and long-term opportunities to
enhance operational efficiencies and save lives. The past 30 years have seen
rapid development in the autonomous driving space, enabling new technologies
that will alleviate the strain placed on human drivers and reduce vehicle
emissions. This paper introduces a testbed for evaluating and benchmarking
platooning algorithms on 1/10th scale vehicles with onboard sensors. To
demonstrate the testbed's utility, we evaluate three algorithms, linear
feedback and two variations of distributed model predictive control, and
compare their results on a typical platooning scenario where the lead vehicle
tracks a reference trajectory that changes speed multiple times. We validate
our algorithms in simulation to analyze the performance as the platoon size
increases, and find that the distributed model predictive control algorithms
outperform linear feedback on hardware and in simulation.
- Abstract(参考訳): 自律走行車プラトンは、運用効率を高め、命を救うための近時および長期の機会を提供する。
過去30年間、自動運転分野は急速に発展し、人間のドライバーの負担を軽減し、車の排出を減らす新しいテクノロジーを可能にしてきた。
本稿では,搭載センサーを搭載した1/10スケール車両における小隊アルゴリズムの評価とベンチマークを行うテストベッドを提案する。
テストベッドの有用性を示すために,リニアフィードバックと分散モデル予測制御の2つのバリエーションの3つのアルゴリズムを評価し,リード車両が複数回速度を変化させる参照軌道を追跡する典型的な小隊形シナリオと比較した。
我々は,小隊の規模が大きくなるにつれて,我々のアルゴリズムをシミュレーションで検証し,分散モデル予測制御アルゴリズムがハードウェアやシミュレーションの線形フィードバックを上回っていることを見出した。
関連論文リスト
- Learning a Stable, Safe, Distributed Feedback Controller for a Heterogeneous Platoon of Autonomous Vehicles [5.289123253466164]
異種小隊のための安定で安全な分散制御系を学習するためのアルゴリズムを提案する。
シミュレーションで自律小隊を訓練し、4台のF110車両からなる小隊によるハードウェアの性能評価を行う。
論文 参考訳(メタデータ) (2024-04-18T19:11:34Z) - Modelling, Positioning, and Deep Reinforcement Learning Path Tracking
Control of Scaled Robotic Vehicles: Design and Experimental Validation [3.807917169053206]
スケールされたロボットカーは通常、車両の状態の推定と制御に特化したタスクを含む階層的な制御機構を備えている。
本稿では, (i) フェデレートされた拡張カルマンフィルタ (FEKF) と (ii) エキスパートデモレータを用いて訓練された新しい深部強化学習 (DRL) パストラッキングコントローラを提案する。
実験により検証されたモデルは、(i)FEKFの設計を支援するために使用され、(ii)DRLに基づく経路追跡アルゴリズムをトレーニングするためのデジタルツインとして機能する。
論文 参考訳(メタデータ) (2024-01-10T14:40:53Z) - A Tricycle Model to Accurately Control an Autonomous Racecar with Locked
Differential [71.53284767149685]
自動オープンホイールレースカーの側面力学に対するロックディファレンシャルの影響をモデル化するための新しい定式化を提案する。
本稿では,マイクロステップの離散化手法を用いて,動的に線形化し,実時間実装に適した予測を行う。
論文 参考訳(メタデータ) (2023-12-22T16:29:55Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - A Data-Driven Slip Estimation Approach for Effective Braking Control
under Varying Road Conditions [0.0]
多層ニューラルネットワークに基づく新しい推定アルゴリズムを提案する。
トレーニングは、広く使われている摩擦モデルから派生した合成データセットに基づいている。
実験結果とモデルベースラインとの比較により,提案手法が最適すべり推定に有効であることを示す。
論文 参考訳(メタデータ) (2022-11-04T16:24:05Z) - Collision-Free Navigation using Evolutionary Symmetrical Neural Networks [0.0]
本稿では、反応衝突回避のための進化的ニューラルネットワークを用いた以前の研究を拡張した。
我々は、対称ニューラルネットワークと呼ばれる新しい手法を提案している。
この手法は,ネットワーク重み間の制約を強制することにより,モデルの性能を向上させる。
論文 参考訳(メタデータ) (2022-03-29T13:02:14Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
移動車に搭載されたカメラから車両の速度を推定する問題を考察する。
そこで本研究では,まずオフ・ザ・シェルフ・トラッカーを用いて車両バウンディングボックスを抽出し,その後,小型ニューラルネットワークを用いて車両速度を回帰する2段階のアプローチを提案する。
論文 参考訳(メタデータ) (2021-09-16T13:10:27Z) - Model-based Decision Making with Imagination for Autonomous Parking [50.41076449007115]
提案アルゴリズムは,駐車前に結果を予測するための想像モデル,高速探索ランダムツリー(RRT)の改良,経路平滑化モジュールの3つの部分から構成される。
われわれのアルゴリズムは、実際のキネマティックな車両モデルに基づいており、実際の自動運転車にアルゴリズムを適用するのにより適している。
アルゴリズムの有効性を評価するため,3つの異なる駐車シナリオにおいて,従来のRTとアルゴリズムを比較した。
論文 参考訳(メタデータ) (2021-08-25T18:24:34Z) - Real-world Ride-hailing Vehicle Repositioning using Deep Reinforcement
Learning [52.2663102239029]
アイドルヘイリングプラットフォーム上での現実世界の車両の深層強化学習と意思決定時間計画に基づく新しい実用的枠組みを提示する。
本手法は,重み付きバッチ学習アルゴリズムを用いて乗車時の状態値関数を学習する。
配車シミュレーション環境におけるベースラインでアルゴリズムをベンチマークし、収益効率の向上における優位性を実証します。
論文 参考訳(メタデータ) (2021-03-08T05:34:05Z) - Robust Behavioral Cloning for Autonomous Vehicles using End-to-End
Imitation Learning [0.4588028371034407]
本稿では、エンド・ツー・エンドの模倣学習を用いて、人間の運転者の頑健な行動クローンのための軽量パイプラインを提案する。
提案されたパイプラインは、シミュレートされた車両に3つの異なる運転行動モデルの訓練と展開に使用された。
論文 参考訳(メタデータ) (2020-10-09T19:03:15Z) - Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction [88.0416857308144]
センサシミュレーションは高価であり,領域ギャップが大きいため,センサシミュレーションに代わる方法を提案する。
我々は、自動運転車の知覚と予測システムの出力を直接シミュレートし、現実的な動き計画テストを可能にする。
論文 参考訳(メタデータ) (2020-08-13T17:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。