論文の概要: Electrical Behavior Association Mining for Household ShortTerm Energy
Consumption Forecasting
- arxiv url: http://arxiv.org/abs/2402.09433v1
- Date: Fri, 26 Jan 2024 03:23:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-18 13:01:27.164032
- Title: Electrical Behavior Association Mining for Household ShortTerm Energy
Consumption Forecasting
- Title(参考訳): 家庭短期エネルギー消費予測のための電気行動関連マイニング
- Authors: Heyang Yu, Yuxi Sun, Yintao Liu, Guangchao Geng, Quanyuan Jiang
- Abstract要約: 本稿では,電気的挙動における相関マイニングを利用した新しいSTECF手法を提案する。
時間相関を探索し、精度を高めるために、畳み込みニューラルネットワークゲートリカレントユニット(CNN-GRU)に基づく予測を提供する。
- 参考スコア(独自算出の注目度): 0.7474723197425266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate household short-term energy consumption forecasting (STECF) is
crucial for home energy management, but it is technically challenging, due to
highly random behaviors of individual residential users. To improve the
accuracy of STECF on a day-ahead scale, this paper proposes an novel STECF
methodology that leverages association mining in electrical behaviors. First, a
probabilistic association quantifying and discovering method is proposed to
model the pairwise behaviors association and generate associated clusters.
Then, a convolutional neural network-gated recurrent unit (CNN-GRU) based
forecasting is provided to explore the temporal correlation and enhance
accuracy. The testing results demonstrate that this methodology yields a
significant enhancement in the STECF.
- Abstract(参考訳): 家庭内短期エネルギー消費予測(STECF)は,家庭内エネルギー管理において極めて重要であるが,個人のランダムな行動のため技術的には困難である。
日頭スケールでstecfの精度を向上させるために,電気行動における連想マイニングを利用した新しいstecf手法を提案する。
まず, 確率的アソシエーションの定量化と発見法を提案し, ペアの挙動アソシエーションをモデル化し, 関連するクラスタを生成する。
次に、畳み込みニューラルネットワークゲートリカレントユニット(CNN-GRU)に基づく予測を行い、時間的相関を探索し、精度を高める。
実験の結果,本手法はSTECFの大幅な向上をもたらすことが示された。
関連論文リスト
- AI-Powered Predictions for Electricity Load in Prosumer Communities [0.0]
本稿では,人工知能を用いた短期負荷予測手法を提案する。
その結果、(負荷予測タスクに適応した)持続的項と回帰的項の組み合わせは、最高の予測精度が得られることがわかった。
論文 参考訳(メタデータ) (2024-02-21T12:23:09Z) - Low-Frequency Load Identification using CNN-BiLSTM Attention Mechanism [0.0]
非侵入負荷モニタリング(Non-Inrusive Load Monitoring, NILM)は、効率的な電力消費管理のための確立された技術である。
本稿では,畳み込みニューラルネットワーク(CNN)と双方向長短期記憶(BILSTM)を組み合わせたハイブリッド学習手法を提案する。
CNN-BILSTMモデルは、時間的(時間的)と空間的(位置的)の両方の特徴を抽出し、アプライアンスレベルでのエネルギー消費パターンを正確に識別することができる。
論文 参考訳(メタデータ) (2023-11-14T21:02:27Z) - A Safe Genetic Algorithm Approach for Energy Efficient Federated
Learning in Wireless Communication Networks [53.561797148529664]
フェデレートラーニング(FL)は、従来の集中型アプローチとは対照的に、デバイスが協調的にモデルトレーニングを行う分散技術として登場した。
FLの既存の取り組みにもかかわらず、その環境影響は、無線ネットワークへの適用性に関するいくつかの重要な課題が特定されているため、まだ調査中である。
現在の研究は遺伝的アルゴリズム(GA)アプローチを提案しており、FLプロセス全体のエネルギー消費と不要な資源利用の両方を最小化することを目標としている。
論文 参考訳(メタデータ) (2023-06-25T13:10:38Z) - Short-term Prediction of Household Electricity Consumption Using
Customized LSTM and GRU Models [5.8010446129208155]
本稿では,GRU (Gated Recurrent Unit) とLong Short-Term Memory (LSTM) アーキテクチャを提案する。
電力消費データセットは家庭ごとのスマートメーターから得られた。
論文 参考訳(メタデータ) (2022-12-16T23:42:57Z) - Predictive Accuracy of a Hybrid Generalized Long Memory Model for Short
Term Electricity Price Forecasting [0.0]
本研究では、一般化長メモリ自己回帰モデル(k-factor GARMA)に基づく新しいハイブリッドモデルの予測性能について検討する。
提案モデルの性能を北プール電力市場のデータを用いて評価した。
論文 参考訳(メタデータ) (2022-04-18T12:21:25Z) - Appliance Level Short-term Load Forecasting via Recurrent Neural Network [6.351541960369854]
本稿では,各家電の消費電力を効率よく予測するSTLFアルゴリズムを提案する。
提案手法は、ディープラーニングにおける強力なリカレントニューラルネットワーク(RNN)アーキテクチャに基づいている。
論文 参考訳(メタデータ) (2021-11-23T16:56:37Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
量子情報力学と熱化を特徴付けるツールとして、OTOC(Out-of-time-orderor)が確立されている。
我々は、OTOCが、ETH(Eigenstate Thermalisation hypothesis)の詳細な詳細を調査するための、本当に正確なツールであることを明確に示している。
無限温度状態における局所作用素の和からなる可観測物の一般クラスに対して、$omega_textrmGOE$の有限サイズスケーリングを推定する。
論文 参考訳(メタデータ) (2021-03-01T17:51:46Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
確率的負荷予測(PLF)は、スマートエネルギーグリッドの効率的な管理に必要な拡張ツールチェーンの重要なコンポーネントです。
ベイジアン混合密度ネットワークを枠とした新しいPLFアプローチを提案する。
後方分布の信頼性と計算にスケーラブルな推定を行うため,平均場変動推定と深層アンサンブルを統合した。
論文 参考訳(メタデータ) (2020-12-23T16:21:34Z) - No MCMC for me: Amortized sampling for fast and stable training of
energy-based models [62.1234885852552]
エネルギーベースモデル(EBM)は、不確実性を表す柔軟で魅力的な方法である。
本稿では,エントロピー規則化ジェネレータを用いてEMMを大規模に訓練し,MCMCサンプリングを記憶する簡単な方法を提案する。
次に、最近提案されたジョイント・エナジー・モデル(JEM)に推定器を適用し、元の性能と高速で安定したトレーニングとを一致させる。
論文 参考訳(メタデータ) (2020-10-08T19:17:20Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。