論文の概要: Guiding Masked Representation Learning to Capture Spatio-Temporal Relationship of Electrocardiogram
- arxiv url: http://arxiv.org/abs/2402.09450v3
- Date: Tue, 19 Mar 2024 16:17:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 23:21:52.430185
- Title: Guiding Masked Representation Learning to Capture Spatio-Temporal Relationship of Electrocardiogram
- Title(参考訳): 心電図の時空間的関係を捉えるための仮面表現学習の指導
- Authors: Yeongyeon Na, Minje Park, Yunwon Tae, Sunghoon Joo,
- Abstract要約: 本稿では,ST-MEM(S-Temporal Masked Electrocardiogram Modeling)を提案する。
ST-MEMは、不整脈に対する様々な実験的設定において、他のSSLベースラインメソッドよりも優れている。
- 参考スコア(独自算出の注目度): 2.2842904085777045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electrocardiograms (ECG) are widely employed as a diagnostic tool for monitoring electrical signals originating from a heart. Recent machine learning research efforts have focused on the application of screening various diseases using ECG signals. However, adapting to the application of screening disease is challenging in that labeled ECG data are limited. Achieving general representation through self-supervised learning (SSL) is a well-known approach to overcome the scarcity of labeled data; however, a naive application of SSL to ECG data, without considering the spatial-temporal relationships inherent in ECG signals, may yield suboptimal results. In this paper, we introduce ST-MEM (Spatio-Temporal Masked Electrocardiogram Modeling), designed to learn spatio-temporal features by reconstructing masked 12-lead ECG data. ST-MEM outperforms other SSL baseline methods in various experimental settings for arrhythmia classification tasks. Moreover, we demonstrate that ST-MEM is adaptable to various lead combinations. Through quantitative and qualitative analysis, we show a spatio-temporal relationship within ECG data. Our code is available at https://github.com/bakqui/ST-MEM.
- Abstract(参考訳): 心電図(ECG)は、心臓由来の電気信号を監視する診断ツールとして広く用いられている。
近年の機械学習研究は,心電図信号を用いた各種疾患のスクリーニングに重点を置いている。
しかし、ラベル付きECGデータに制限があるため、スクリーニング疾患への適応は困難である。
自己教師付き学習(SSL)による一般的な表現の実現はラベル付きデータの不足を克服するためのよく知られたアプローチであるが、ECG信号に固有の空間的・時間的関係を考慮せずに、SSLをECGデータに適用することで、準最適結果が得られる。
本稿では,12誘導心電図データを再構成し,時空間特性を学習するためのST-MEM(Spatio-Temporal Masked Electrocardiogram Modeling)を提案する。
ST-MEMは、不整脈分類タスクの様々な実験環境で、他のSSLベースラインメソッドよりも優れている。
さらに,ST-MEMは様々な鉛の組み合わせに適応可能であることを示す。
定量的および定性的な分析により、心電図データ内の時空間的関係を示す。
私たちのコードはhttps://github.com/bakqui/ST-MEM.comで利用可能です。
関連論文リスト
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
そこで本研究では,周期型ECG表現学習手法を提案する。
心房細動患者の心電図ではRR間隔の不規則性やP波の欠如を考慮し, 経時的および経時的表現のための特定の事前訓練タスクを開発する。
本手法は,発作/持続性心房細動検出のためのBTCHデータセット,textiti., 0.953/0.996におけるAUCの顕著な性能を示す。
論文 参考訳(メタデータ) (2024-10-08T10:03:52Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
心電図(Electrocardiogram、ECG)は、心臓の状態をモニタリングするための主要な非侵襲的診断ツールである。
最近の研究は心電図データを用いた心臓状態の分類に集中しているが、心電図レポートの生成は見落としている。
LLMとマルチモーダル命令を用いてECGレポート生成に取り組む最初の試みであるMultimodal ECG Instruction Tuning (MEIT) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-07T23:20:56Z) - ECG-SL: Electrocardiogram(ECG) Segment Learning, a deep learning method
for ECG signal [19.885905393439014]
本稿では,ECG信号の周期的性質をモデル化する新しいECG-Segment Based Learning (ECG-SL) フレームワークを提案する。
この構造的特徴に基づき, 時間的モデルを用いて, 各種臨床業務の時間的情報学習を行う。
提案手法はベースラインモデルより優れ,3つの臨床応用におけるタスク固有手法と比較して競争性能が向上する。
論文 参考訳(メタデータ) (2023-10-01T23:17:55Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
深層学習モデルは、自動的にMS病変を分節する約束を示しているが、正確な注釈付きデータの不足は、この分野の進歩を妨げている。
我々は,MS病変の不均衡分布とファジィ境界を考慮したDecoupled Hard Label Correction(DHLC)戦略を導入する。
また,集約型中央モデルを利用したCELC(Centrally Enhanced Label Correction)戦略も導入した。
論文 参考訳(メタデータ) (2023-08-31T00:36:10Z) - ECG-CL: A Comprehensive Electrocardiogram Interpretation Method Based on
Continual Learning [20.465733855762835]
心電図(ECG)モニタリングは心血管疾患(CVD)早期診断の最も強力な手法の一つである。
古典的なルールベースのアルゴリズムは、今ではディープラーニングベースの手法によって完全にパフォーマンスが向上している。
本稿では,高解像度の低レベルセマンティック情報を一括して保持できるマルチレゾリューションモデルを提案する。
論文 参考訳(メタデータ) (2023-04-10T15:19:00Z) - Frozen Language Model Helps ECG Zero-Shot Learning [12.974685769614062]
マルチモーダルECG-Text Self-supervised pre-training (METS)を提案する。
トレーニング可能なECGエンコーダと凍結言語モデルを用いて,ペアのECGを組込み,個別に自動で臨床報告を行う。
下流の分類タスクでは、METSは注釈付きデータを使わずに、約10%のパフォーマンス改善を実現している。
論文 参考訳(メタデータ) (2023-03-22T05:01:14Z) - Multimodality Multi-Lead ECG Arrhythmia Classification using
Self-Supervised Learning [5.675787521359948]
SSLベースのマルチモーダリティECG分類を提案する。
提案するネットワークはSSL学習パラダイムに従っており,前ストリームタスクと下流タスクに対応する2つのモジュールで構成されている。
提案手法の有効性を評価するため,12リードのPhystoNet 2020データセット上で10倍のクロス検証を行った。
論文 参考訳(メタデータ) (2022-09-30T18:45:34Z) - GeoECG: Data Augmentation via Wasserstein Geodesic Perturbation for
Robust Electrocardiogram Prediction [20.8603653664403]
本稿では,心電図信号に基づく心疾患検出の堅牢性を高めるために,生理学的に着想を得たデータ拡張手法を提案する。
我々は、ワッサーシュタイン空間の測地線に沿った他のクラスに対してデータ分布を摂動することで、拡張されたサンプルを得る。
12個の心電図信号から学習し,心臓状態の5つのカテゴリを識別できる。
論文 参考訳(メタデータ) (2022-08-02T03:14:13Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。