論文の概要: Can AI and humans genuinely communicate?
- arxiv url: http://arxiv.org/abs/2402.09494v2
- Date: Mon, 25 Mar 2024 16:32:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 21:53:51.139583
- Title: Can AI and humans genuinely communicate?
- Title(参考訳): AIと人間は真にコミュニケーションできるのか?
- Authors: Constant Bonard,
- Abstract要約: 本稿では,「メンタル・ビヘイビア・方法論」と呼ぶ問いに答える方法を探る。
この方法論は以下の3つのステップに従っている。
最初の2つのステップが成功し、AIが人間のような結果でテストに合格すれば、このAIと人間が真にコミュニケーションできる証拠となる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Can AI and humans genuinely communicate? In this article, after giving some background and motivating my proposal (sections 1 to 3), I explore a way to answer this question that I call the "mental-behavioral methodology" (sections 4 and 5). This methodology follows the following three steps: First, spell out what mental capacities are sufficient for human communication (as opposed to communication more generally). Second, spell out the experimental paradigms required to test whether a behavior exhibits these capacities. Third, apply or adapt these paradigms to test whether an AI displays the relevant behaviors. If the first two steps are successfully completed, and if the AI passes the tests with human-like results, this constitutes evidence that this AI and humans can genuinely communicate. This mental-behavioral methodology has the advantage that we don't need to understand the workings of black-box algorithms, such as standard deep neural networks. This is comparable to the fact that we don't need to understand how human brains work to know that humans can genuinely communicate. This methodology also has its disadvantages and I will discuss some of them (section 6).
- Abstract(参考訳): AIと人間は真にコミュニケーションできるのか?
本稿では、背景を述べ、私の提案を動機づけた上で(第1節から第3節まで)、「メンタル・ビヘイビア・方法論」(第4節と第5節)と呼ぶこの問いに答える方法を探る。
この方法論は以下の3つのステップに従っている: まず、人間のコミュニケーションに(より一般的にはコミュニケーションとは対照的に)精神的な能力が十分であるかを綴る。
次に、振る舞いがこれらの能力を示すかどうかをテストするのに必要な実験パラダイムを綴ります。
第3に、これらのパラダイムを適用して、AIが関連する振る舞いを表示するかどうかをテストする。
最初の2つのステップが成功し、AIが人間のような結果でテストに合格すれば、このAIと人間が真にコミュニケーションできる証拠となる。
このメンタル行動方法論は、標準的なディープニューラルネットワークのようなブラックボックスアルゴリズムの動作を理解する必要がないという利点がある。
これは、人間の脳がどのように働くかを理解しなくても、人間が真にコミュニケーションできるという事実に匹敵するものです。
この方法論にも欠点があり、そのいくつかについて論じます(第6条)。
関連論文リスト
- Explainable Human-AI Interaction: A Planning Perspective [32.477369282996385]
AIシステムは、ループ内の人間に説明可能である必要がある。
我々は、AIエージェントがメンタルモデルを使用して人間の期待に沿うか、あるいは説明的コミュニケーションを通じて期待を変更する方法について論じる。
本書の主な焦点は、協調的なシナリオであるが、同じ精神モデルが難読化や偽造にどのように使用できるかを指摘したい。
論文 参考訳(メタデータ) (2024-05-19T22:22:21Z) - SACSoN: Scalable Autonomous Control for Social Navigation [62.59274275261392]
我々は、社会的に邪魔にならないナビゲーションのための政策の訓練方法を開発した。
この反事実的摂動を最小化することにより、共有空間における人間の自然な振る舞いを変えない方法でロボットに行動を促すことができる。
屋内移動ロボットが人間の傍観者と対話する大規模なデータセットを収集する。
論文 参考訳(メタデータ) (2023-06-02T19:07:52Z) - Can Machines Imitate Humans? Integrative Turing Tests for Vision and Language Demonstrate a Narrowing Gap [45.6806234490428]
3つの言語タスクと3つのビジョンタスクで人間を模倣する能力において、現在のAIをベンチマークします。
実験では、549人の人間エージェントと26人のAIエージェントがデータセットの作成に使われ、1,126人の人間審査員と10人のAI審査員が参加した。
結果として、現在のAIは、複雑な言語とビジョンの課題において人間を偽装できるものではないことが判明した。
論文 参考訳(メタデータ) (2022-11-23T16:16:52Z) - Human-to-Robot Imitation in the Wild [50.49660984318492]
本研究では,第三者の視点からの学習を中心に,効率的なワンショットロボット学習アルゴリズムを提案する。
実世界における20種類の操作タスクを含む,ワンショットの一般化と成功を示す。
論文 参考訳(メタデータ) (2022-07-19T17:59:59Z) - Diagnosing AI Explanation Methods with Folk Concepts of Behavior [70.10183435379162]
我々は「成功」は、その説明がどんな情報を含むかだけでなく、人間の説明者がどのような情報から理解するかにも依存すると考えている。
我々は、人間の説明による社会的帰属の枠組みとして、行動の民意的概念を用いる。
論文 参考訳(メタデータ) (2022-01-27T00:19:41Z) - EmpBot: A T5-based Empathetic Chatbot focusing on Sentiments [75.11753644302385]
共感的会話エージェントは、議論されていることを理解しているだけでなく、会話相手の暗黙の感情も認識すべきである。
変圧器事前学習言語モデル(T5)に基づく手法を提案する。
本研究では,自動計測と人的評価の両方を用いて,情緒的ダイアログデータセットを用いたモデルの評価を行った。
論文 参考訳(メタデータ) (2021-10-30T19:04:48Z) - Towards Human-Understandable Visual Explanations:Imperceptible
High-frequency Cues Can Better Be Removed [46.36600006968488]
HVS(Human Visual System)と精神物理学に制約された人間の能力を考慮する必要があると我々は主張する。
実顔画像と偽顔画像の分類に関するケーススタディを行い、標準的なニューラルネットワークによって選択された特徴の多くは、人間には認識できないことが判明した。
論文 参考訳(メタデータ) (2021-04-16T08:11:30Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
本稿では,人間とロボットのコラボレーションにおいて,人間のようなコミュニケーションを実現するための新しい説明可能なAI(XAI)フレームワークを提案する。
ロボットは、人間のユーザの階層的なマインドモデルを構築し、コミュニケーションの一形態として自身のマインドの説明を生成する。
その結果,提案手法はロボットの協調動作性能とユーザ認識を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2020-07-24T23:35:03Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z) - Cognitive Anthropomorphism of AI: How Humans and Computers Classify
Images [0.0]
人間は認知人類同型(英: Cognitive anthropomorphism)、つまりAIが人間の知性と同じ性質を持つことを期待する。
このミスマッチは、適切な人間とAIの相互作用に障害をもたらす。
私は、人間とAIの分類のミスマッチに対処できるシステム設計に3つの戦略を提供します。
論文 参考訳(メタデータ) (2020-02-07T21:49:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。