Guided Quantum Compression for Higgs Identification
- URL: http://arxiv.org/abs/2402.09524v1
- Date: Wed, 14 Feb 2024 19:01:51 GMT
- Title: Guided Quantum Compression for Higgs Identification
- Authors: Vasilis Belis, Patrick Odagiu, Michele Grossi, Florentin Reiter,
G\"unther Dissertori, Sofia Vallecorsa
- Abstract summary: Quantum machine learning provides a fundamentally novel and promising approach to analyzing data.
We show that using a classical auto-encoder as an independent preprocessing step can significantly decrease the classification performance of a quantum machine learning algorithm.
We design an architecture that unifies the preprocessing and quantum classification algorithms into a single trainable model: the guided quantum compression model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum machine learning provides a fundamentally novel and promising
approach to analyzing data. However, many data sets are too complex for
currently available quantum computers. Consequently, quantum machine learning
applications conventionally resort to dimensionality reduction algorithms,
e.g., auto-encoders, before passing data through the quantum models. We show
that using a classical auto-encoder as an independent preprocessing step can
significantly decrease the classification performance of a quantum machine
learning algorithm. To ameliorate this issue, we design an architecture that
unifies the preprocessing and quantum classification algorithms into a single
trainable model: the guided quantum compression model. The utility of this
model is demonstrated by using it to identify the Higgs boson in proton-proton
collisions at the LHC, where the conventional approach proves ineffective.
Conversely, the guided quantum compression model excels at solving this
classification problem, achieving a good accuracy. Additionally, the model
developed herein shows better performance compared to the classical benchmark
when using only low-level kinematic features.
Related papers
- Enhancing the performance of Variational Quantum Classifiers with hybrid autoencoders [0.0]
We propose an alternative method which reduces the dimensionality of a given dataset by taking into account the specific quantum embedding that comes after.
This method aspires to make quantum machine learning with VQCs more versatile and effective on datasets of high dimension.
arXiv Detail & Related papers (2024-09-05T08:51:20Z) - Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach [0.0]
This research explores the integration of quantum computing with classical machine learning for image classification tasks.
We propose a hybrid quantum-classical approach that leverages the strengths of both paradigms.
The experimental results indicate that while the hybrid model demonstrates the feasibility of integrating quantum computing with classical techniques, the accuracy of the final model, trained on quantum outcomes, is currently lower than the classical model trained on compressed features.
arXiv Detail & Related papers (2024-08-05T22:16:27Z) - Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective [7.7063925534143705]
We introduce the Quantum-Train(QT) framework, a novel approach that integrates quantum computing with machine learning algorithms.
QT achieves remarkable results by employing a quantum neural network alongside a classical mapping model.
arXiv Detail & Related papers (2024-05-18T14:35:57Z) - Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
We present an application of quantum transfer learning for detecting cracks in gray value images.
We compare the performance and training time of PennyLane's standard qubits with IBM's qasm_simulator and real backends.
arXiv Detail & Related papers (2023-07-31T14:45:29Z) - Expressive Quantum Supervised Machine Learning using Kerr-nonlinear
Parametric Oscillators [0.0]
Quantum machine learning with variational quantum algorithms (VQA) has been actively investigated as a practical algorithm in the noisy intermediate-scale quantum (NISQ) era.
Recent researches reveal that the data reuploading, which repeatedly encode classical data into quantum circuit, is necessary for obtaining the expressive quantum machine learning model.
We propose quantum machine learning with Kerrnon Parametric Hilberts (KPOs) as another promising quantum computing device.
arXiv Detail & Related papers (2023-05-01T07:01:45Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Anomaly detection in high-energy physics using a quantum autoencoder [0.0]
We study quantum autoencoders based on variational quantum circuits for the problem of anomaly detection at the LHC.
For a QCD $tbart$ background and resonant heavy Higgs signals, we find that a simple quantum autoencoder outperforms classical autoencoders for the same inputs and trains very efficiently.
This shows that quantum autoencoders are good candidates for analysing high-energy physics data in future LHC runs.
arXiv Detail & Related papers (2021-12-09T14:38:14Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum Machine Learning with SQUID [64.53556573827525]
We present the Scaled QUantum IDentifier (SQUID), an open-source framework for exploring hybrid Quantum-Classical algorithms for classification problems.
We provide examples of using SQUID in a standard binary classification problem from the popular MNIST dataset.
arXiv Detail & Related papers (2021-04-30T21:34:11Z) - Nearest Centroid Classification on a Trapped Ion Quantum Computer [57.5195654107363]
We design a quantum Nearest Centroid classifier, using techniques for efficiently loading classical data into quantum states and performing distance estimations.
We experimentally demonstrate it on a 11-qubit trapped-ion quantum machine, matching the accuracy of classical nearest centroid classifiers for the MNIST handwritten digits dataset and achieving up to 100% accuracy for 8-dimensional synthetic data.
arXiv Detail & Related papers (2020-12-08T01:10:30Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.