LLM-Enhanced User-Item Interactions: Leveraging Edge Information for
Optimized Recommendations
- URL: http://arxiv.org/abs/2402.09617v1
- Date: Wed, 14 Feb 2024 23:12:09 GMT
- Title: LLM-Enhanced User-Item Interactions: Leveraging Edge Information for
Optimized Recommendations
- Authors: Xinyuan Wang, Liang Wu, Liangjie Hong, Hao Liu, Yanjie Fu
- Abstract summary: Graph neural networks, as a popular research area in recent years, have numerous studies on relationship mining.
Current cutting-edge research in graph neural networks has not been effectively integrated with large language models.
We propose an innovative framework that combines the strong contextual representation capabilities of LLMs with the relationship extraction and analysis functions of GNNs.
- Score: 28.77605585519833
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The extraordinary performance of large language models has not only reshaped
the research landscape in the field of NLP but has also demonstrated its
exceptional applicative potential in various domains. However, the potential of
these models in mining relationships from graph data remains under-explored.
Graph neural networks, as a popular research area in recent years, have
numerous studies on relationship mining. Yet, current cutting-edge research in
graph neural networks has not been effectively integrated with large language
models, leading to limited efficiency and capability in graph relationship
mining tasks. A primary challenge is the inability of LLMs to deeply exploit
the edge information in graphs, which is critical for understanding complex
node relationships. This gap limits the potential of LLMs to extract meaningful
insights from graph structures, limiting their applicability in more complex
graph-based analysis. We focus on how to utilize existing LLMs for mining and
understanding relationships in graph data, applying these techniques to
recommendation tasks. We propose an innovative framework that combines the
strong contextual representation capabilities of LLMs with the relationship
extraction and analysis functions of GNNs for mining relationships in graph
data. Specifically, we design a new prompt construction framework that
integrates relational information of graph data into natural language
expressions, aiding LLMs in more intuitively grasping the connectivity
information within graph data. Additionally, we introduce graph relationship
understanding and analysis functions into LLMs to enhance their focus on
connectivity information in graph data. Our evaluation on real-world datasets
demonstrates the framework's ability to understand connectivity information in
graph data.
Related papers
- Graph-Augmented Relation Extraction Model with LLMs-Generated Support Document [7.0421339410165045]
This study introduces a novel approach to sentence-level relation extraction (RE)
It integrates Graph Neural Networks (GNNs) with Large Language Models (LLMs) to generate contextually enriched support documents.
Our experiments, conducted on the CrossRE dataset, demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-10-30T20:48:34Z) - NT-LLM: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models [26.739650151993928]
Graphs are a fundamental data structure for representing relationships in real-world scenarios.
Applying Large Language Models (LLMs) to graph-related tasks poses significant challenges.
We introduce Node Tokenizer for Large Language Models (NT-LLM), a novel framework that efficiently encodes graph structures.
arXiv Detail & Related papers (2024-10-14T17:21:57Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
This work introduces a benchmark to assess large language models' capabilities in graph pattern tasks.
We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions.
Our benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models.
arXiv Detail & Related papers (2024-10-04T04:48:33Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
Large Language Models (LLMs) with pretrained knowledge and powerful semantic comprehension abilities have recently shown a remarkable ability to benefit applications using vision and text data.
E-LLaGNN is a framework with an on-demand LLM service that enriches message passing procedure of graph learning by enhancing a limited fraction of nodes from the graph.
arXiv Detail & Related papers (2024-07-20T22:09:42Z) - A Survey of Large Language Models for Graphs [21.54279919476072]
We conduct an in-depth review of the latest state-of-the-art Large Language Models applied in graph learning.
We introduce a novel taxonomy to categorize existing methods based on their framework design.
We explore the strengths and limitations of each framework, and emphasize potential avenues for future research.
arXiv Detail & Related papers (2024-05-10T18:05:37Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Disentangled Representation Learning with Large Language Models for
Text-Attributed Graphs [57.052160123387104]
We present the Disentangled Graph-Text Learner (DGTL) model, which is able to enhance the reasoning and predicting capabilities of LLMs for TAGs.
Our proposed DGTL model incorporates graph structure information through tailored disentangled graph neural network (GNN) layers.
Experimental evaluations demonstrate the effectiveness of the proposed DGTL model on achieving superior or comparable performance over state-of-the-art baselines.
arXiv Detail & Related papers (2023-10-27T14:00:04Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
Large language models (LLMs) have emerged as frontrunners, showcasing unparalleled prowess in diverse applications.
Merging the capabilities of LLMs with graph-structured data has been a topic of keen interest.
This paper bifurcates such integrations into two predominant categories.
arXiv Detail & Related papers (2023-10-09T07:59:34Z) - Beyond Text: A Deep Dive into Large Language Models' Ability on
Understanding Graph Data [13.524529952170672]
Large language models (LLMs) have achieved impressive performance on many natural language processing tasks.
We aim to assess whether LLMs can effectively process graph data and leverage topological structures to enhance performance.
By comparing LLMs' performance with specialized graph models, we offer insights into the strengths and limitations of employing LLMs for graph analytics.
arXiv Detail & Related papers (2023-10-07T23:25:22Z) - GPT4Graph: Can Large Language Models Understand Graph Structured Data ?
An Empirical Evaluation and Benchmarking [17.7473474499538]
Large language models like ChatGPT have become indispensable to artificial general intelligence.
In this study, we conduct an investigation to assess the proficiency of LLMs in comprehending graph data.
Our findings contribute valuable insights towards bridging the gap between language models and graph understanding.
arXiv Detail & Related papers (2023-05-24T11:53:19Z) - CogDL: A Comprehensive Library for Graph Deep Learning [55.694091294633054]
We present CogDL, a library for graph deep learning that allows researchers and practitioners to conduct experiments, compare methods, and build applications with ease and efficiency.
In CogDL, we propose a unified design for the training and evaluation of GNN models for various graph tasks, making it unique among existing graph learning libraries.
We develop efficient sparse operators for CogDL, enabling it to become the most competitive graph library for efficiency.
arXiv Detail & Related papers (2021-03-01T12:35:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.