Graph-Augmented Relation Extraction Model with LLMs-Generated Support Document
- URL: http://arxiv.org/abs/2410.23452v1
- Date: Wed, 30 Oct 2024 20:48:34 GMT
- Title: Graph-Augmented Relation Extraction Model with LLMs-Generated Support Document
- Authors: Vicky Dong, Hao Yu, Yao Chen,
- Abstract summary: This study introduces a novel approach to sentence-level relation extraction (RE)
It integrates Graph Neural Networks (GNNs) with Large Language Models (LLMs) to generate contextually enriched support documents.
Our experiments, conducted on the CrossRE dataset, demonstrate the effectiveness of our approach.
- Score: 7.0421339410165045
- License:
- Abstract: This study introduces a novel approach to sentence-level relation extraction (RE) that integrates Graph Neural Networks (GNNs) with Large Language Models (LLMs) to generate contextually enriched support documents. By harnessing the power of LLMs to generate auxiliary information, our approach crafts an intricate graph representation of textual data. This graph is subsequently processed through a Graph Neural Network (GNN) to refine and enrich the embeddings associated with each entity ensuring a more nuanced and interconnected understanding of the data. This methodology addresses the limitations of traditional sentence-level RE models by incorporating broader contexts and leveraging inter-entity interactions, thereby improving the model's ability to capture complex relationships across sentences. Our experiments, conducted on the CrossRE dataset, demonstrate the effectiveness of our approach, with notable improvements in performance across various domains. The results underscore the potential of combining GNNs with LLM-generated context to advance the field of relation extraction.
Related papers
- Language Models are Graph Learners [70.14063765424012]
Language Models (LMs) are challenging the dominance of domain-specific models, including Graph Neural Networks (GNNs) and Graph Transformers (GTs)
We propose a novel approach that empowers off-the-shelf LMs to achieve performance comparable to state-of-the-art GNNs on node classification tasks.
arXiv Detail & Related papers (2024-10-03T08:27:54Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
Large Language Models (LLMs) with pretrained knowledge and powerful semantic comprehension abilities have recently shown a remarkable ability to benefit applications using vision and text data.
E-LLaGNN is a framework with an on-demand LLM service that enriches message passing procedure of graph learning by enhancing a limited fraction of nodes from the graph.
arXiv Detail & Related papers (2024-07-20T22:09:42Z) - Unleashing the Potential of Text-attributed Graphs: Automatic Relation Decomposition via Large Language Models [31.443478448031886]
RoSE (Relation-oriented Semantic Edge-decomposition) is a novel framework that decomposes the graph structure by analyzing raw text attributes.
Our framework significantly enhances node classification performance across various datasets, with improvements of up to 16% on the Wisconsin dataset.
arXiv Detail & Related papers (2024-05-28T20:54:47Z) - G-SAP: Graph-based Structure-Aware Prompt Learning over Heterogeneous Knowledge for Commonsense Reasoning [8.02547453169677]
We propose a novel Graph-based Structure-Aware Prompt Learning Model for commonsense reasoning, named G-SAP.
In particular, an evidence graph is constructed by integrating multiple knowledge sources, i.e. ConceptNet, Wikipedia, and Cambridge Dictionary.
The results reveal a significant advancement over the existing models, especially, with 6.12% improvement over the SoTA LM+GNNs model on the OpenbookQA dataset.
arXiv Detail & Related papers (2024-05-09T08:28:12Z) - Relating-Up: Advancing Graph Neural Networks through Inter-Graph Relationships [17.978546172777342]
Graph Neural Networks (GNNs) have excelled in learning from graph-structured data.
Despite their successes, GNNs are limited by neglecting the context of relationships across graphs.
We introduce Relating-Up, a plug-and-play module that enhances GNNs by exploiting inter-graph relationships.
arXiv Detail & Related papers (2024-05-07T02:16:54Z) - Relational Graph Convolutional Networks for Sentiment Analysis [0.0]
Graph Convolutional Networks (NRGCs) offer interpretability and flexibility by capturing dependencies between data points represented as nodes in a graph.
We demonstrate the effectiveness of our approach by using pre-trained language models such as BERT and RoBERTa with RGCN architecture on product reviews from Amazon and Digikala datasets.
arXiv Detail & Related papers (2024-04-16T07:27:49Z) - LLM-Enhanced User-Item Interactions: Leveraging Edge Information for
Optimized Recommendations [28.77605585519833]
Graph neural networks, as a popular research area in recent years, have numerous studies on relationship mining.
Current cutting-edge research in graph neural networks has not been effectively integrated with large language models.
We propose an innovative framework that combines the strong contextual representation capabilities of LLMs with the relationship extraction and analysis functions of GNNs.
arXiv Detail & Related papers (2024-02-14T23:12:09Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Disentangled Representation Learning with Large Language Models for
Text-Attributed Graphs [57.052160123387104]
We present the Disentangled Graph-Text Learner (DGTL) model, which is able to enhance the reasoning and predicting capabilities of LLMs for TAGs.
Our proposed DGTL model incorporates graph structure information through tailored disentangled graph neural network (GNN) layers.
Experimental evaluations demonstrate the effectiveness of the proposed DGTL model on achieving superior or comparable performance over state-of-the-art baselines.
arXiv Detail & Related papers (2023-10-27T14:00:04Z) - Lightweight, Dynamic Graph Convolutional Networks for AMR-to-Text
Generation [56.73834525802723]
Lightweight Dynamic Graph Convolutional Networks (LDGCNs) are proposed.
LDGCNs capture richer non-local interactions by synthesizing higher order information from the input graphs.
We develop two novel parameter saving strategies based on the group graph convolutions and weight tied convolutions to reduce memory usage and model complexity.
arXiv Detail & Related papers (2020-10-09T06:03:46Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.