論文の概要: User Modeling and User Profiling: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2402.09660v1
- Date: Thu, 15 Feb 2024 02:06:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-16 17:16:47.356631
- Title: User Modeling and User Profiling: A Comprehensive Survey
- Title(参考訳): ユーザモデリングとユーザプロファイリング: 総合的な調査
- Authors: Erasmo Purificato (1), Ludovico Boratto (2), and Ernesto William De
Luca (1) ((1) Otto von Guericke University Magdeburg, Germany, (2) University
of Cagliari, Italy)
- Abstract要約: 本稿では,ユーザモデリングとプロファイリング研究の現状,進化,今後の方向性について調査する。
我々は、初期のステレオタイプモデルから最新のディープラーニング技術までの開発をトレースする、歴史的概要を提供する。
また、プライバシ保護技術に対する重要なニーズと、ユーザモデリングアプローチにおける説明可能性と公正性への推進にも対処する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of artificial intelligence (AI) into daily life, particularly
through information retrieval and recommender systems, has necessitated
advanced user modeling and profiling techniques to deliver personalized
experiences. These techniques aim to construct accurate user representations
based on the rich amounts of data generated through interactions with these
systems. This paper presents a comprehensive survey of the current state,
evolution, and future directions of user modeling and profiling research. We
provide a historical overview, tracing the development from early stereotype
models to the latest deep learning techniques, and propose a novel taxonomy
that encompasses all active topics in this research area, including recent
trends. Our survey highlights the paradigm shifts towards more sophisticated
user profiling methods, emphasizing implicit data collection, multi-behavior
modeling, and the integration of graph data structures. We also address the
critical need for privacy-preserving techniques and the push towards
explainability and fairness in user modeling approaches. By examining the
definitions of core terminology, we aim to clarify ambiguities and foster a
clearer understanding of the field by proposing two novel encyclopedic
definitions of the main terms. Furthermore, we explore the application of user
modeling in various domains, such as fake news detection, cybersecurity, and
personalized education. This survey serves as a comprehensive resource for
researchers and practitioners, offering insights into the evolution of user
modeling and profiling and guiding the development of more personalized,
ethical, and effective AI systems.
- Abstract(参考訳): 人工知能(AI)の日常生活、特に情報検索とレコメンデーションシステムへの統合は、パーソナライズされた体験を提供するために高度なユーザーモデリングとプロファイリング技術を必要としている。
これらの手法は,これらのシステムとのインタラクションによって生成される大量のデータに基づいて,正確なユーザ表現を構築することを目的としている。
本稿では,ユーザモデリングとプロファイリング研究の現状,進化,今後の方向性について総合的な調査を行う。
我々は,初期のステレオタイプモデルから最新のディープラーニング技術までの発展をたどり,その歴史を概観し,最近のトレンドを含めて,本研究分野のすべての活発なトピックを包含する新しい分類法を提案する。
調査では,より高度なユーザプロファイリング手法へのパラダイムシフト,暗黙のデータ収集,マルチビヘイビアモデリング,グラフデータ構造の統合を強調した。
また,プライバシ保護技術の必要性や,ユーザモデリングアプローチにおける説明可能性と公平性への推進にも対処しています。
中心項の定義を調べることによって、曖昧さを明確にし、主項の2つの新しい百科事典的定義を提案し、分野のより明確な理解を促進することを目指す。
さらに,フェイクニュース検出,サイバーセキュリティ,パーソナライズ教育など,さまざまな分野におけるユーザモデリングの適用について検討する。
この調査は、ユーザモデリングとプロファイリングの進化に関する洞察を提供し、よりパーソナライズされた倫理的で効果的なAIシステムの開発を導く、研究者や実践者のための総合的なリソースとして機能する。
関連論文リスト
- User-centric evaluation of explainability of AI with and for humans: a comprehensive empirical study [5.775094401949666]
この研究はHuman-Centered Artificial Intelligence (HCAI)にある。
一般的に使用されるeXplainable Artificial Intelligence (XAI)アルゴリズムのユーザ中心評価の結果に焦点を当てている。
論文 参考訳(メタデータ) (2024-10-21T12:32:39Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - AI Foundation Models in Remote Sensing: A Survey [6.036426846159163]
本稿では,リモートセンシング領域における基礎モデルの包括的調査を行う。
コンピュータビジョンおよびドメイン固有タスクにおけるそれらの応用に基づいて、これらのモデルを分類する。
これらの基盤モデルによって達成された、新しいトレンドと大きな進歩を強調します。
論文 参考訳(メタデータ) (2024-08-06T22:39:34Z) - The Oscars of AI Theater: A Survey on Role-Playing with Language Models [38.68597594794648]
本調査では,言語モデルを用いたロールプレイングの急成長分野について検討する。
それは、初期のペルソナモデルから、Large Language Models(LLMs)によって促進される高度なキャラクタ駆動シミュレーションまでの開発に焦点を当てている。
データやモデル,アライメント,エージェントアーキテクチャ,評価など,これらのシステムを設計する上で重要なコンポーネントを包括的に分類する。
論文 参考訳(メタデータ) (2024-07-16T08:20:39Z) - A Survey of Latent Factor Models in Recommender Systems [0.0]
本調査は,リコメンデータシステムにおける潜在因子モデルについて系統的にレビューする。
文献は、学習データ、モデルアーキテクチャ、学習戦略、最適化技術をカバーする構造化されたフレームワークを通して検証される。
論文 参考訳(メタデータ) (2024-05-28T11:28:59Z) - A Survey on Personalized Content Synthesis with Diffusion Models [57.01364199734464]
PCSは、特定のユーザ定義のプロンプトに対する関心の主題をカスタマイズすることを目的としている。
過去2年間で150以上の方法が提案されている。
本稿では,PCSの拡散モデルに着目した包括的調査を行う。
論文 参考訳(メタデータ) (2024-05-09T04:36:04Z) - Data Augmentation in Human-Centric Vision [54.97327269866757]
本研究では,人間中心型視覚タスクにおけるデータ拡張手法の包括的分析を行う。
それは、人物のReID、人間のパーシング、人間のポーズ推定、歩行者検出など、幅広い研究領域に展開している。
我々の研究は、データ拡張手法をデータ生成とデータ摂動の2つの主なタイプに分類する。
論文 参考訳(メタデータ) (2024-03-13T16:05:18Z) - Transformers and Language Models in Form Understanding: A Comprehensive
Review of Scanned Document Analysis [16.86139440201837]
我々は、スキャンされた文書の文脈におけるフォーム理解のトピックに焦点を当てる。
我々の研究手法は、人気文書の詳細な分析と過去10年間のトレンドの理解の形式に関するものである。
我々は、トランスフォーマーがいかにフィールドを前進させ、フォームアンダード技術に革命をもたらしたかを紹介する。
論文 参考訳(メタデータ) (2024-03-06T22:22:02Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
視覚シーンの構成的性質を観察し、推論する視覚システムは、我々の世界を理解するのに不可欠である。
モデルは、このようなモダリティと大規模なトレーニングデータとのギャップを埋めることを学び、コンテキスト推論、一般化、テスト時の迅速な機能を容易にした。
このようなモデルの出力は、例えば、バウンディングボックスを設けて特定のオブジェクトをセグメント化したり、画像や映像シーンについて質問したり、言語命令でロボットの動作を操作することで対話的な対話を行うなど、リトレーニングすることなく、人為的なプロンプトによって変更することができる。
論文 参考訳(メタデータ) (2023-07-25T17:59:18Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。