論文の概要: Preserving Data Privacy for ML-driven Applications in Open Radio Access
Networks
- arxiv url: http://arxiv.org/abs/2402.09710v1
- Date: Thu, 15 Feb 2024 05:06:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-16 17:19:46.097580
- Title: Preserving Data Privacy for ML-driven Applications in Open Radio Access
Networks
- Title(参考訳): オープン無線アクセスネットワークにおけるML駆動アプリケーションのためのデータプライバシ保護
- Authors: Pranshav Gajjar, Azuka Chiejina, Vijay K. Shah
- Abstract要約: 本稿では,5G Open Radio Access Network (O-RAN)ネットワークにおける共有データベースシナリオのケーススタディとして,プライバシ問題に対処することを目的とする。
我々は、モデルとネットワーク性能を損なうことなく、スペクトル共有および干渉緩和アプリケーションのために機械学習(ML)モデルで使用できるデータを保護することに重点を置いている。
- 参考スコア(独自算出の注目度): 1.3351610617039973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning offers a promising solution to improve spectrum access
techniques by utilizing data-driven approaches to manage and share limited
spectrum resources for emerging applications. For several of these
applications, the sensitive wireless data (such as spectrograms) are stored in
a shared database or multistakeholder cloud environment and are therefore prone
to privacy leaks. This paper aims to address such privacy concerns by examining
the representative case study of shared database scenarios in 5G Open Radio
Access Network (O-RAN) networks where we have a shared database within the
near-real-time (near-RT) RAN intelligent controller. We focus on securing the
data that can be used by machine learning (ML) models for spectrum sharing and
interference mitigation applications without compromising the model and network
performances. The underlying idea is to leverage a (i) Shuffling-based
learnable encryption technique to encrypt the data, following which, (ii)
employ a custom Vision transformer (ViT) as the trained ML model that is
capable of performing accurate inferences on such encrypted data. The paper
offers a thorough analysis and comparisons with analogous convolutional neural
networks (CNN) as well as deeper architectures (such as ResNet-50) as
baselines. Our experiments showcase that the proposed approach significantly
outperforms the baseline CNN with an improvement of 24.5% and 23.9% for the
percent accuracy and F1-Score respectively when operated on encrypted data.
Though deeper ResNet-50 architecture is obtained as a slightly more accurate
model, with an increase of 4.4%, the proposed approach boasts a reduction of
parameters by 99.32%, and thus, offers a much-improved prediction time by
nearly 60%.
- Abstract(参考訳): 深層学習は、データ駆動アプローチを利用して新興アプリケーション向けの限られたスペクトルリソースを管理し共有することで、スペクトルアクセス技術を改善する有望なソリューションを提供する。
これらのアプリケーションのいくつかでは、センシティブな無線データ(スペクトログラムなど)は共有データベースやマルチステークホルダークラウド環境に格納されるため、プライバシリークが発生しやすい。
本稿では、5G Open Radio Access Network(O-RAN)ネットワークにおける共有データベースシナリオの代表的なケーススタディとして、近リアルタイム(近RT)RANインテリジェントコントローラ内に共有データベースを持つ場合について検討する。
我々は、モデルとネットワーク性能を損なうことなく、スペクトル共有および干渉緩和アプリケーションのために機械学習(ML)モデルで使用できるデータを保護することに注力する。
基本的な考え方は
(i)データ暗号化のためのシャッフルベースの学習可能な暗号化技術
(ii)このような暗号化データに対して正確な推論を行うことができる訓練されたmlモデルとしてカスタムビジョントランスフォーマ(vit)を用いる。
この論文は、アナログ畳み込みニューラルネットワーク(CNN)と、より深いアーキテクチャ(ResNet-50など)をベースラインとして、徹底的な分析と比較を提供する。
実験の結果,提案手法は,暗号化データ上で操作した場合の精度が24.5%,F1スコアが23.9%向上し,ベースラインCNNを著しく上回ることがわかった。
resnet-50アーキテクチャはより正確なモデルとして得られたが、4.4%の増加でパラメータが99.32%減少し、予測時間が60%近く向上している。
関連論文リスト
- Towards Vision Mixture of Experts for Wildlife Monitoring on the Edge [13.112893692624768]
TinyMLのコミュニティは、通信帯域幅と過剰なクラウドストレージコストを節約するための方法を積極的に提案している。
モバイル・ビジョン・トランスフォーマーにおいて、パッチごとの条件付き計算を初めて行う。
The model on Cornell Sap Sucker Woods 60。
論文 参考訳(メタデータ) (2024-11-12T14:36:06Z) - Enhanced Real-Time Threat Detection in 5G Networks: A Self-Attention RNN Autoencoder Approach for Spectral Intrusion Analysis [8.805162150763847]
本稿では,自己認識機構とリカレントニューラルネットワーク(RNN)に基づくオートエンコーダを統合する実験モデルを提案する。
本手法は, 時系列解析, プロセス・イン・フェイズ, および二次(I/Q)サンプルを用いて, ジャミング攻撃の可能性を示す不規則性を同定する。
モデルアーキテクチャは自己アテンション層で拡張され、RNNオートエンコーダの機能を拡張する。
論文 参考訳(メタデータ) (2024-11-05T07:01:15Z) - Efficient Federated Intrusion Detection in 5G ecosystem using optimized BERT-based model [0.7100520098029439]
5Gは高度なサービスを提供し、IoT(Internet of Things)内のインテリジェントトランスポート、コネクテッドヘルスケア、スマートシティなどのアプリケーションをサポートする。
これらの進歩は、ますます高度なサイバー攻撃を伴う、重大なセキュリティ上の課題をもたらす。
本稿では,連合学習と大規模言語モデル(LLM)を用いた頑健な侵入検知システム(IDS)を提案する。
論文 参考訳(メタデータ) (2024-09-28T15:56:28Z) - Decorrelating Structure via Adapters Makes Ensemble Learning Practical for Semi-supervised Learning [50.868594148443215]
コンピュータビジョンでは、従来のアンサンブル学習法は訓練効率が低いか、限られた性能を示す。
本稿では,視覚的タスクに適応器を用いたDecorrelating Structure(DSA)による軽量,損失関数なし,アーキテクチャに依存しないアンサンブル学習を提案する。
論文 参考訳(メタデータ) (2024-08-08T01:31:38Z) - Quanv4EO: Empowering Earth Observation by means of Quanvolutional Neural Networks [62.12107686529827]
本稿は、大量のリモートセンシングデータの処理において、量子コンピューティング技術を活用することへの大きなシフトを取り上げる。
提案したQuanv4EOモデルでは,多次元EOデータを前処理するための準進化法が導入された。
主要な知見は,提案モデルが画像分類の精度を維持するだけでなく,EOのユースケースの約5%の精度向上を図っていることを示唆している。
論文 参考訳(メタデータ) (2024-07-24T09:11:34Z) - Programmable and Customized Intelligence for Traffic Steering in 5G
Networks Using Open RAN Architectures [16.48682480842328]
5G以降のモバイルネットワークは、前例のない規模で異質なユースケースをサポートする。
無線アクセスネットワーク(RAN)のこのようなきめ細かい制御は、現在のセルアーキテクチャでは不可能である。
クローズドループ制御を可能とし,ユーザレベルでRANをデータ駆動でインテリジェントに最適化するオープンアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-09-28T15:31:06Z) - Comprehensive RF Dataset Collection and Release: A Deep Learning-Based
Device Fingerprinting Use Case [10.698553177585973]
我々は、USRP B210受信機を用いて25種類のLoRa対応IoT伝送デバイスから収集した大規模なRFフィンガープリントデータセットを提示、リリースする。
我々のデータセットは、多数のSigMF準拠バイナリファイルからなり、I/Q時間領域のサンプルと対応するFFTベースのLoRa送信ファイルで構成されている。
論文 参考訳(メタデータ) (2022-01-06T19:07:57Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
プライバシー保護型UAV画像認識のための半教師付きフェデレートラーニング(SSFL)フレームワークを提案する。
異なるカメラモジュールを使用したUAVによって収集されたローカルデータの数、特徴、分布には大きな違いがある。
本稿では,クライアントがトレーニングに参加する頻度,すなわちFedFreqアグリゲーションルールに基づくアグリゲーションルールを提案する。
論文 参考訳(メタデータ) (2022-01-03T16:49:33Z) - Deep Learning-based Implicit CSI Feedback in Massive MIMO [68.81204537021821]
ニューラルネットワーク(NN)を用いて,プリコーディング行列インジケータ(PMI)符号化とデコードモジュールを置き換える,低オーバヘッド特性を継承するDLベースの暗黙的フィードバックアーキテクチャを提案する。
1つのリソースブロック(RB)では、2つのアンテナ構成下のタイプIコードブックと比較して25.0%と40.0%のオーバーヘッドを節約できる。
論文 参考訳(メタデータ) (2021-05-21T02:43:02Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
総生産ネットワーク(SPN)のプライバシ保護のためのフレームワークを提案する。
CryptoSPNは、中規模のSPNに対して秒の順序で高効率で正確な推論を行う。
論文 参考訳(メタデータ) (2020-02-03T14:49:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。