Grounding Language Model with Chunking-Free In-Context Retrieval
- URL: http://arxiv.org/abs/2402.09760v1
- Date: Thu, 15 Feb 2024 07:22:04 GMT
- Title: Grounding Language Model with Chunking-Free In-Context Retrieval
- Authors: Hongjin Qian, Zheng Liu, Kelong Mao, Yujia Zhou, Zhicheng Dou
- Abstract summary: This paper presents a novel Chunking-Free In-Context (CFIC) retrieval approach, specifically tailored for Retrieval-Augmented Generation (RAG) systems.
- Score: 27.316315081648572
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel Chunking-Free In-Context (CFIC) retrieval
approach, specifically tailored for Retrieval-Augmented Generation (RAG)
systems. Traditional RAG systems often struggle with grounding responses using
precise evidence text due to the challenges of processing lengthy documents and
filtering out irrelevant content. Commonly employed solutions, such as document
chunking and adapting language models to handle longer contexts, have their
limitations. These methods either disrupt the semantic coherence of the text or
fail to effectively address the issues of noise and inaccuracy in evidence
retrieval.
CFIC addresses these challenges by circumventing the conventional chunking
process. It utilizes the encoded hidden states of documents for in-context
retrieval, employing auto-aggressive decoding to accurately identify the
specific evidence text required for user queries, eliminating the need for
chunking. CFIC is further enhanced by incorporating two decoding strategies,
namely Constrained Sentence Prefix Decoding and Skip Decoding. These strategies
not only improve the efficiency of the retrieval process but also ensure that
the fidelity of the generated grounding text evidence is maintained. Our
evaluations of CFIC on a range of open QA datasets demonstrate its superiority
in retrieving relevant and accurate evidence, offering a significant
improvement over traditional methods. By doing away with the need for document
chunking, CFIC presents a more streamlined, effective, and efficient retrieval
solution, making it a valuable advancement in the field of RAG systems.
Related papers
- Is Semantic Chunking Worth the Computational Cost? [0.0]
This study systematically evaluates the effectiveness of semantic chunking using three common retrieval-related tasks.
The results show that the computational costs associated with semantic chunking are not justified by consistent performance gains.
arXiv Detail & Related papers (2024-10-16T21:53:48Z) - GQE: Generalized Query Expansion for Enhanced Text-Video Retrieval [56.610806615527885]
This paper introduces a novel data-centric approach, Generalized Query Expansion (GQE), to address the inherent information imbalance between text and video.
By adaptively segmenting videos into short clips and employing zero-shot captioning, GQE enriches the training dataset with comprehensive scene descriptions.
GQE achieves state-of-the-art performance on several benchmarks, including MSR-VTT, MSVD, LSMDC, and VATEX.
arXiv Detail & Related papers (2024-08-14T01:24:09Z) - Improving Retrieval in Sponsored Search by Leveraging Query Context Signals [6.152499434499752]
We propose an approach to enhance query understanding by augmenting queries with rich contextual signals.
We use web search titles and snippets to ground queries in real-world information and utilize GPT-4 to generate query rewrites and explanations.
Our context-aware approach substantially outperforms context-free models.
arXiv Detail & Related papers (2024-07-19T14:28:53Z) - SparseCL: Sparse Contrastive Learning for Contradiction Retrieval [87.02936971689817]
Contradiction retrieval refers to identifying and extracting documents that explicitly disagree with or refute the content of a query.
Existing methods such as similarity search and crossencoder models exhibit significant limitations.
We introduce SparseCL that leverages specially trained sentence embeddings designed to preserve subtle, contradictory nuances between sentences.
arXiv Detail & Related papers (2024-06-15T21:57:03Z) - Text-Video Retrieval with Global-Local Semantic Consistent Learning [122.15339128463715]
We propose a simple yet effective method, Global-Local Semantic Consistent Learning (GLSCL)
GLSCL capitalizes on latent shared semantics across modalities for text-video retrieval.
Our method achieves comparable performance with SOTA as well as being nearly 220 times faster in terms of computational cost.
arXiv Detail & Related papers (2024-05-21T11:59:36Z) - Corrective Retrieval Augmented Generation [36.04062963574603]
Retrieval-augmented generation (RAG) relies heavily on relevance of retrieved documents, raising concerns about how the model behaves if retrieval goes wrong.
We propose the Corrective Retrieval Augmented Generation (CRAG) to improve the robustness of generation.
CRAG is plug-and-play and can be seamlessly coupled with various RAG-based approaches.
arXiv Detail & Related papers (2024-01-29T04:36:39Z) - Learning to Filter Context for Retrieval-Augmented Generation [75.18946584853316]
Generation models are required to generate outputs given partially or entirely irrelevant passages.
FILCO identifies useful context based on lexical and information-theoretic approaches.
It trains context filtering models that can filter retrieved contexts at test time.
arXiv Detail & Related papers (2023-11-14T18:41:54Z) - Noise-Robust Dense Retrieval via Contrastive Alignment Post Training [89.29256833403167]
Contrastive Alignment POst Training (CAPOT) is a highly efficient finetuning method that improves model robustness without requiring index regeneration.
CAPOT enables robust retrieval by freezing the document encoder while the query encoder learns to align noisy queries with their unaltered root.
We evaluate CAPOT noisy variants of MSMARCO, Natural Questions, and Trivia QA passage retrieval, finding CAPOT has a similar impact as data augmentation with none of its overhead.
arXiv Detail & Related papers (2023-04-06T22:16:53Z) - GERE: Generative Evidence Retrieval for Fact Verification [57.78768817972026]
We propose GERE, the first system that retrieves evidences in a generative fashion.
The experimental results on the FEVER dataset show that GERE achieves significant improvements over the state-of-the-art baselines.
arXiv Detail & Related papers (2022-04-12T03:49:35Z) - Improving Query Representations for Dense Retrieval with Pseudo
Relevance Feedback [29.719150565643965]
This paper proposes ANCE-PRF, a new query encoder that uses pseudo relevance feedback (PRF) to improve query representations for dense retrieval.
ANCE-PRF uses a BERT encoder that consumes the query and the top retrieved documents from a dense retrieval model, ANCE, and it learns to produce better query embeddings directly from relevance labels.
Analysis shows that the PRF encoder effectively captures the relevant and complementary information from PRF documents, while ignoring the noise with its learned attention mechanism.
arXiv Detail & Related papers (2021-08-30T18:10:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.