論文の概要: Reinforcement Learning for Solving Stochastic Vehicle Routing Problem
with Time Windows
- arxiv url: http://arxiv.org/abs/2402.09765v1
- Date: Thu, 15 Feb 2024 07:35:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-16 16:26:26.303638
- Title: Reinforcement Learning for Solving Stochastic Vehicle Routing Problem
with Time Windows
- Title(参考訳): 時間窓を用いた確率的車両経路問題に対する強化学習
- Authors: Zangir Iklassov and Ikboljon Sobirov and Ruben Solozabal and Martin
Takac
- Abstract要約: 本稿では,時空間における車両ルーティング問題 (SVRP) の最適化のための強化学習手法を提案する。
我々は、特定の顧客時間窓とともに、不確実な旅行コストと需要を考慮に入れた新しいSVRPの定式化を開発する。
ルーティングコストを最小限に抑えるために、強化学習を通じてトレーニングされた注意ベースのニューラルネットワークが使用される。
- 参考スコア(独自算出の注目度): 0.09831489366502298
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a reinforcement learning approach to optimize the
Stochastic Vehicle Routing Problem with Time Windows (SVRP), focusing on
reducing travel costs in goods delivery. We develop a novel SVRP formulation
that accounts for uncertain travel costs and demands, alongside specific
customer time windows. An attention-based neural network trained through
reinforcement learning is employed to minimize routing costs. Our approach
addresses a gap in SVRP research, which traditionally relies on heuristic
methods, by leveraging machine learning. The model outperforms the Ant-Colony
Optimization algorithm, achieving a 1.73% reduction in travel costs. It
uniquely integrates external information, demonstrating robustness in diverse
environments, making it a valuable benchmark for future SVRP studies and
industry application.
- Abstract(参考訳): 本稿では,商品配送における運送コストの削減に焦点をあてた,時間を考慮した確率的車両ルーティング問題 (SVRP) を最適化するための強化学習手法を提案する。
我々は,特定の顧客時間窓とともに,旅行コストや需要の不確実性を考慮した新しいsvrp定式化手法を開発した。
ルーティングコストを最小限に抑えるために強化学習によって訓練された注意に基づくニューラルネットワークを用いる。
我々のアプローチは、伝統的にヒューリスティックな手法に依存しているSVRP研究のギャップに機械学習を活用して対処する。
このモデルはAnt-Colony Optimizationアルゴリズムより優れており、旅行コストは1.73%削減されている。
外部情報を独自に統合し、多様な環境で堅牢性を実証し、将来のSVRP研究や産業応用の貴重なベンチマークとなる。
関連論文リスト
- Reinforcement Learning for Solving Stochastic Vehicle Routing Problem [0.09831489366502298]
本研究では、車両ルーティング問題(SVRP)解決における強化学習(RL)と機械学習(ML)技術の利用のギャップを解消する。
本稿では,SVRPのキーソースを包括的に扱う新しいエンドツーエンドフレームワークを提案する。
提案モデルでは,広く採用されている最先端のメユーリスティックよりも優れた性能を示し,旅行コストの3.43%削減を実現している。
論文 参考訳(メタデータ) (2023-11-13T19:46:22Z) - Optimizing Inventory Routing: A Decision-Focused Learning Approach using
Neural Networks [0.0]
我々は、現実世界のIRPを解決するための意思決定に基づくアプローチを定式化し、提案する。
このアプローチは、在庫予測とルーティング最適化を直接エンドツーエンドシステムに統合することで、堅牢なサプライチェーン戦略を保証する可能性がある。
論文 参考訳(メタデータ) (2023-11-02T04:05:28Z) - TranDRL: A Transformer-Driven Deep Reinforcement Learning Enabled
Prescriptive Maintenance Framework [62.73424880653293]
産業システムは、運用効率を高め、ダウンタイムを減らすための信頼性の高い予測保守戦略を要求する。
本稿では,Transformerモデルに基づくニューラルネットワークと深部強化学習(DRL)アルゴリズムの機能を活用し,システムの保守動作を最適化する統合フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-29T02:27:54Z) - Roulette-Wheel Selection-Based PSO Algorithm for Solving the Vehicle
Routing Problem with Time Windows [58.891409372784516]
本稿では,Roulette Wheel Method (RWPSO) を用いた新しいPSO手法を提案する。
RWPSOのSolomon VRPTWベンチマークデータセットを用いた実験は、RWPSOが文学の他の最先端アルゴリズムと競合していることを示している。
論文 参考訳(メタデータ) (2023-06-04T09:18:02Z) - TransPath: Learning Heuristics For Grid-Based Pathfinding via
Transformers [64.88759709443819]
探索の効率を顕著に向上させると考えられる,インスタンス依存のプロキシを学習することを提案する。
私たちが最初に学ぶことを提案するプロキシは、補正係数、すなわち、インスタンスに依存しないコスト・ツー・ゴの見積もりと完璧な見積もりの比率である。
第2のプロキシはパス確率であり、グリッドセルが最も短いパスに横たわっている可能性を示している。
論文 参考訳(メタデータ) (2022-12-22T14:26:11Z) - A deep learning Attention model to solve the Vehicle Routing Problem and
the Pick-up and Delivery Problem with Time Windows [0.0]
フランスの公共列車会社SNCFは、車両のルーティング問題に対処して、新しいタイプの交通サービスを開発する実験を行っている。
我々は,CPDPTWの実現可能性チェックのために,アテンション・デコーダ構造を用いて新しい挿入を設計する。
我々のモデルは、CVRPTWでよく知られた学習ソリューションよりも優れた結果をもたらす。
論文 参考訳(メタデータ) (2022-12-20T16:25:55Z) - Actively Learning Costly Reward Functions for Reinforcement Learning [56.34005280792013]
複雑な実世界の環境でエージェントを訓練することは、桁違いに高速であることを示す。
強化学習の手法を新しい領域に適用することにより、興味深く非自明な解を見つけることができることを示す。
論文 参考訳(メタデータ) (2022-11-23T19:17:20Z) - Learning to Solve Soft-Constrained Vehicle Routing Problems with
Lagrangian Relaxation [0.4014524824655105]
現実世界のアプリケーションにおける車両ルーティング問題(VRP)には、様々な制約が伴うことが多い。
ソフト制約付きVRPを解くために,強化学習に基づく手法を提案する。
本稿では,3種類のVRP,TSPTW(Travelling Salesman Problem with Time Windows),CVRP(Capacitated VRP),CVRPTW(Capacitated VRP with Time Windows)に適用する。
論文 参考訳(メタデータ) (2022-07-20T12:51:06Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
学習に基づく制御アルゴリズムは、訓練のための豊富な監督を伴うデータ収集を必要とする。
本稿では,機会制約付き最適制御と動的学習とフィードバック制御を統合した安全な探索による最適動作計画のための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-05-09T05:57:43Z) - Multi-Vehicle Routing Problems with Soft Time Windows: A Multi-Agent
Reinforcement Learning Approach [9.717648122961483]
ソフトタイムウインドウ(MVRPSTW)を用いたマルチ車両ルーティング問題は、都市ロジスティクスシステムにおいて不可欠である。
従来の手法は計算効率と解の質のジレンマを引き起こす。
そこで本研究では,ルーティング問題の解決に要する時間的オフライントレーニングのメリットを即時評価する,Multi-Agent Attention Modelと呼ばれる新しい強化学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-13T14:26:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。