A Machine-Learning-Aided Visual Analysis Workflow for Investigating Air
Pollution Data
- URL: http://arxiv.org/abs/2202.05413v1
- Date: Fri, 11 Feb 2022 02:24:21 GMT
- Title: A Machine-Learning-Aided Visual Analysis Workflow for Investigating Air
Pollution Data
- Authors: Yun-Hsin Kuo, Takanori Fujiwara, Charles C.-K. Chou, Chun-houh Chen,
Kwan-Liu Ma
- Abstract summary: Analyzing air pollution data is challenging as there are various analysis focuses from different aspects: feature (what), space (where), and time (when)
We develop a visual analytic system that supports a flexible analysis workflow, allowing domain experts to freely explore different aspects based on their analysis needs.
- Score: 18.972547412113567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Analyzing air pollution data is challenging as there are various analysis
focuses from different aspects: feature (what), space (where), and time (when).
As in most geospatial analysis problems, besides high-dimensional features, the
temporal and spatial dependencies of air pollution induce the complexity of
performing analysis. Machine learning methods, such as dimensionality
reduction, can extract and summarize important information of the data to lift
the burden of understanding such a complicated environment. In this paper, we
present a methodology that utilizes multiple machine learning methods to
uniformly explore these aspects. With this methodology, we develop a visual
analytic system that supports a flexible analysis workflow, allowing domain
experts to freely explore different aspects based on their analysis needs. We
demonstrate the capability of our system and analysis workflow supporting a
variety of analysis tasks with multiple use cases.
Related papers
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - DISCOVER: A Data-driven Interactive System for Comprehensive Observation, Visualization, and ExploRation of Human Behaviour [6.716560115378451]
We introduce a modular, flexible, yet user-friendly software framework specifically developed to streamline computational-driven data exploration for human behavior analysis.
Our primary objective is to democratize access to advanced computational methodologies, thereby enabling researchers across disciplines to engage in detailed behavioral analysis without the need for extensive technical proficiency.
arXiv Detail & Related papers (2024-07-18T11:28:52Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Ontologies are widely used for representing domain knowledge and meta data.
One straightforward solution is to integrate statistical analysis and machine learning.
Numerous papers have been published on embedding, but a lack of systematic reviews hinders researchers from gaining a comprehensive understanding of this field.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - A Comprehensive Review on Computer Vision Analysis of Aerial Data [3.1537607776738605]
This paper reviews the computer vision tasks within the domain of aerial data analysis.
The paper provides the comparison of various hyper parameters employed across diverse architectures and tasks.
The paper thoroughly examines the challenges inherent in aerial data analysis, offering practical solutions.
arXiv Detail & Related papers (2024-02-15T08:10:09Z) - Machine Learning for Urban Air Quality Analytics: A Survey [27.96085346957208]
Air pollution poses an urgent global concern with far-reaching consequences.
In this article, we present a comprehensive survey of Machine Learning-based air quality analytics.
arXiv Detail & Related papers (2023-10-14T17:03:29Z) - An analysis of Universal Differential Equations for data-driven
discovery of Ordinary Differential Equations [7.48176340790825]
We make a contribution by testing the UDE framework in the context of Ordinary Differential Equations (ODEs) discovery.
We highlight some of the issues arising when combining data-driven approaches and numerical solvers.
We believe that our analysis represents a significant contribution in investigating the capabilities and limitations of Physics-informed Machine Learning frameworks.
arXiv Detail & Related papers (2023-06-17T12:26:50Z) - Demonstration of InsightPilot: An LLM-Empowered Automated Data
Exploration System [48.62158108517576]
We introduce InsightPilot, an automated data exploration system designed to simplify the data exploration process.
InsightPilot automatically selects appropriate analysis intents, such as understanding, summarizing, and explaining.
In brief, an IQuery is an abstraction and automation of data analysis operations, which mimics the approach of data analysts.
arXiv Detail & Related papers (2023-04-02T07:27:49Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
This review aims at providing a comprehensive vision of the main state-of-the-art libraries and frameworks for machine learning and data analytics available today.
The main simulation, emulation, deployment systems, and testbeds for experimental research on the Edge-to-Cloud Continuum available today are also surveyed.
arXiv Detail & Related papers (2022-04-29T08:06:05Z) - Automatic Gaze Analysis: A Survey of DeepLearning based Approaches [61.32686939754183]
Eye gaze analysis is an important research problem in the field of computer vision and Human-Computer Interaction.
There are several open questions including what are the important cues to interpret gaze direction in an unconstrained environment.
We review the progress across a range of gaze analysis tasks and applications to shed light on these fundamental questions.
arXiv Detail & Related papers (2021-08-12T00:30:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.