論文の概要: Hybrid CNN Bi-LSTM neural network for Hyperspectral image classification
- arxiv url: http://arxiv.org/abs/2402.10026v1
- Date: Thu, 15 Feb 2024 15:46:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-16 15:13:16.574407
- Title: Hybrid CNN Bi-LSTM neural network for Hyperspectral image classification
- Title(参考訳): ハイパースペクトル画像分類のためのハイブリッドCNN Bi-LSTMニューラルネットワーク
- Authors: Alok Ranjan Sahoo and Pavan Chakraborty
- Abstract要約: 本稿では,3次元CNN,2次元CNN,Bi-LSTMを組み合わせたニューラルネットワークを提案する。
99.83、99.98、100%の精度を達成でき、それぞれIP、PU、SAデータセットにおける最先端モデルのトレーニング可能なパラメータは30%に過ぎなかった。
- 参考スコア(独自算出の注目度): 1.2691047660244332
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Hyper spectral images have drawn the attention of the researchers for its
complexity to classify. It has nonlinear relation between the materials and the
spectral information provided by the HSI image. Deep learning methods have
shown superiority in learning this nonlinearity in comparison to traditional
machine learning methods. Use of 3-D CNN along with 2-D CNN have shown great
success for learning spatial and spectral features. However, it uses
comparatively large number of parameters. Moreover, it is not effective to
learn inter layer information. Hence, this paper proposes a neural network
combining 3-D CNN, 2-D CNN and Bi-LSTM. The performance of this model has been
tested on Indian Pines(IP) University of Pavia(PU) and Salinas Scene(SA) data
sets. The results are compared with the state of-the-art deep learning-based
models. This model performed better in all three datasets. It could achieve
99.83, 99.98 and 100 percent accuracy using only 30 percent trainable
parameters of the state-of-art model in IP, PU and SA datasets respectively.
- Abstract(参考訳): ハイパースペクトル画像は、分類が複雑であることから研究者の注目を集めている。
材料とHSI画像が提供するスペクトル情報との間には非線形な関係がある。
ディープラーニング手法は、従来の機械学習手法と比較して、この非線形性を学習する上で優位性を示している。
3次元CNNと2次元CNNの併用は空間的特徴とスペクトル的特徴の学習において大きな成功を収めている。
しかし、比較的多くのパラメータを使用する。
さらに、層間情報を学習することは効果的ではない。
そこで本研究では,3次元CNN,2次元CNN,Bi-LSTMを組み合わせたニューラルネットワークを提案する。
このモデルの性能は、パヴィア大学(PU)とサリナス・シーン(SA)のデータセットで検証されている。
結果は、最先端のディープラーニングベースのモデルと比較される。
このモデルは3つのデータセットでよりよく機能した。
99.83、99.98、100%の精度を達成でき、それぞれIP、PU、SAデータセットにおける最先端モデルのトレーニング可能なパラメータは30%に過ぎなかった。
関連論文リスト
- The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - ULIP: Learning a Unified Representation of Language, Images, and Point
Clouds for 3D Understanding [110.07170245531464]
現在の3Dモデルは、注釈付きデータの少ないデータセットと、事前に定義されたカテゴリセットによって制限されている。
近年の進歩は、言語などの他のモダリティからの知識を活用することで、同様の問題を著しく軽減できることを示している。
画像,テキスト,3次元点雲の統一表現は,3つのモードからオブジェクト三重項を事前学習することで学習する。
論文 参考訳(メタデータ) (2022-12-10T01:34:47Z) - Decoupled Mixup for Generalized Visual Recognition [71.13734761715472]
視覚認識のためのCNNモデルを学習するための新しい「デカップリング・ミクスアップ」手法を提案する。
本手法は,各画像を識別領域と雑音発生領域に分離し,これらの領域を均一に組み合わせてCNNモデルを訓練する。
実験結果から,未知のコンテキストからなるデータに対する本手法の高一般化性能を示す。
論文 参考訳(メタデータ) (2022-10-26T15:21:39Z) - Intelligent 3D Network Protocol for Multimedia Data Classification using
Deep Learning [0.0]
我々はSTIPと3D CNNの機能を組み合わせたハイブリッドディープラーニングアーキテクチャを実装し、3Dビデオのパフォーマンスを効果的に向上させる。
その結果,UCF101の動作認識のための文献から得られた最新のフレームワークを95%の精度で比較した。
論文 参考訳(メタデータ) (2022-07-23T12:24:52Z) - Large-Margin Representation Learning for Texture Classification [67.94823375350433]
本稿では,テクスチャ分類のための小さなデータセット上で教師付きモデルをトレーニングするために,畳み込み層(CL)と大規模計量学習を組み合わせた新しいアプローチを提案する。
テクスチャと病理画像データセットの実験結果から,提案手法は同等のCNNと比較して計算コストが低く,収束が早く,競争精度が向上することが示された。
論文 参考訳(メタデータ) (2022-06-17T04:07:45Z) - Classification of Hyperspectral Images by Using Spectral Data and Fully
Connected Neural Network [0.0]
ハイパースペクトル画像では90%以上の分類成功が達成されている。
本研究では,インドマツ,サリナス,パヴィアセンター,パヴィア大学,ボツワナのハイパースペクトル像を分類した。
すべてのハイパースペクトル画像のテストセットに対して平均97.5%の精度が達成される。
論文 参考訳(メタデータ) (2022-01-08T12:45:48Z) - Classification of diffraction patterns using a convolutional neural
network in single particle imaging experiments performed at X-ray
free-electron lasers [53.65540150901678]
X線自由電子レーザー(XFEL)における単一粒子イメージング(SPI)は、その自然環境における粒子の3次元構造を決定するのに特に適している。
再建を成功させるためには、単一のヒットに由来する回折パターンを多数の取得パターンから分離する必要がある。
本稿では,この課題を画像分類問題として定式化し,畳み込みニューラルネットワーク(CNN)アーキテクチャを用いて解決することを提案する。
論文 参考訳(メタデータ) (2021-12-16T17:03:14Z) - OSLO: On-the-Sphere Learning for Omnidirectional images and its
application to 360-degree image compression [59.58879331876508]
全方向画像の表現モデルの学習について検討し、全方向画像の深層学習モデルで使用される数学的ツールを再定義するために、HEALPixの球面一様サンプリングの特性を利用することを提案する。
提案したオン・ザ・スフィア・ソリューションは、等方形画像に適用された類似の学習モデルと比較して、13.7%のビットレートを節約できる圧縮ゲインを向上させる。
論文 参考訳(メタデータ) (2021-07-19T22:14:30Z) - Benchmarking CNN on 3D Anatomical Brain MRI: Architectures, Data
Augmentation and Deep Ensemble Learning [2.1446056201053185]
我々は最近のSOTA(State-of-the-art)3D CNNの広範なベンチマークを提案し、データ拡張と深層アンサンブル学習の利点も評価した。
年齢予測,性別分類,統合失調症診断の3つの課題について,N=10kスキャンを含む多地点の脳解剖学的MRIデータセットを用いて実験を行った。
その結果,VBM画像の予測精度は擬似RAWデータよりも有意に向上した。
DenseNetとSmall-DenseNetは、私たちが提案したより軽量なバージョンで、すべてのデータレシエーションのパフォーマンスにおいて優れた妥協を提供する。
論文 参考訳(メタデータ) (2021-06-02T13:00:35Z) - Hyperspectral Image Classification: Artifacts of Dimension Reduction on
Hybrid CNN [1.2875323263074796]
2Dおよび3DCNNモデルは、ハイパースペクトル画像の空間的およびスペクトル情報を利用するのに非常に効率的であることが証明されている。
この研究は、計算コストを大幅に削減する軽量CNN(3Dと2D-CNN)モデルを提案した。
論文 参考訳(メタデータ) (2021-01-25T18:43:57Z) - A Fast 3D CNN for Hyperspectral Image Classification [0.456877715768796]
ハイパースペクトルイメージング(HSI)は、多くの現実世界の用途に広く利用されている。
2次元畳み込みニューラルネットワーク(CNN)は、HSICがスペクトル空間情報の両方に大きく依存する、実行可能なアプローチである。
本研究は,空間スペクトル特徴写像を併用した3次元CNNモデルを提案する。
論文 参考訳(メタデータ) (2020-04-29T12:57:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。