UNDIAL: Self-Distillation with Adjusted Logits for Robust Unlearning in Large Language Models
- URL: http://arxiv.org/abs/2402.10052v2
- Date: Wed, 16 Oct 2024 11:50:27 GMT
- Title: UNDIAL: Self-Distillation with Adjusted Logits for Robust Unlearning in Large Language Models
- Authors: Yijiang River Dong, Hongzhou Lin, Mikhail Belkin, Ramon Huerta, Ivan Vulić,
- Abstract summary: We introduce UnDIAL (Unlearning via Self-Distillation on Adjusted Logits), a novel and robust unlearning method.
Our approach leverages self-distillation to adjust logits and selectively reduce the influence of targeted tokens.
- Score: 12.45822383965784
- License:
- Abstract: Mitigating the retention of sensitive or private information in large language models is essential for enhancing privacy and safety. Existing unlearning methods, like Gradient Ascent and Negative Preference Optimization, directly tune models to remove unwanted information. However, these methods often become unstable because they fine-tune by maximizing cross-entropy loss, which is the opposite of traditional loss minimization in learning. This reversal creates instability, especially on larger datasets, as the model struggles to balance unlearning with maintaining language capacity, leading to over-unlearning. In this paper, we introduce UnDIAL (Unlearning via Self-Distillation on Adjusted Logits), a novel and robust unlearning method. Our approach leverages self-distillation to adjust logits and selectively reduce the influence of targeted tokens. This technique ensures smooth convergence and avoids catastrophic forgetting, even in challenging unlearning tasks with large datasets and sequential unlearning requests. Extensive experiments show that UnDIAL can achieve both robustness in unlearning and scalability while maintaining stable training dynamics and resilience to hyperparameter tuning.
Related papers
- Towards Robust and Cost-Efficient Knowledge Unlearning for Large Language Models [25.91643745340183]
Large Language Models (LLMs) have demonstrated strong reasoning and memorization capabilities via pretraining on massive textual corpora.
This poses risk of privacy and copyright violations, highlighting the need for efficient machine unlearning methods.
We propose two novel techniques for robust and efficient unlearning for LLMs.
arXiv Detail & Related papers (2024-08-13T04:18:32Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [49.043599241803825]
Iterative Contrastive Unlearning (ICU) framework consists of three core components.
A Knowledge Unlearning Induction module removes specific knowledge through an unlearning loss.
A Contrastive Learning Enhancement module to preserve the model's expressive capabilities against the pure unlearning goal.
And an Iterative Unlearning Refinement module that dynamically assess the unlearning extent on specific data pieces and make iterative update.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - Machine Unlearning with Minimal Gradient Dependence for High Unlearning Ratios [18.73206066109299]
Mini-Unlearning is a novel approach that capitalizes on a critical observation: unlearned parameters correlate with retrained parameters through contraction mapping.
This lightweight, scalable method significantly enhances model accuracy and strengthens resistance to membership inference attacks.
Our experiments demonstrate that Mini-Unlearning not only works under higher unlearning ratios but also outperforms existing techniques in both accuracy and security.
arXiv Detail & Related papers (2024-06-24T01:43:30Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
Large language models (LLMs) have achieved significant progress from pre-training on and memorizing a wide range of textual data.
This process might suffer from privacy issues and violations of data protection regulations.
We propose an efficient unlearning framework that could efficiently update LLMs without having to retrain the whole model after data removals.
arXiv Detail & Related papers (2023-10-31T03:35:59Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Meta-Learning Online Adaptation of Language Models [88.8947656843812]
Large language models encode impressively broad world knowledge in their parameters.
However, the knowledge in static language models falls out of date, limiting the model's effective "shelf life"
arXiv Detail & Related papers (2023-05-24T11:56:20Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.