Distillation Robustifies Unlearning
- URL: http://arxiv.org/abs/2506.06278v2
- Date: Mon, 09 Jun 2025 17:28:11 GMT
- Title: Distillation Robustifies Unlearning
- Authors: Bruce W. Lee, Addie Foote, Alex Infanger, Leni Shor, Harish Kamath, Jacob Goldman-Wetzler, Bryce Woodworth, Alex Cloud, Alexander Matt Turner,
- Abstract summary: We propose a scalable method that distills an unlearned model into a partially noised copy of itself.<n>At its strongest setting, UNDO matches the robustness of a model retrained from scratch with perfect data filtering.<n>We also show that UNDO robustifies unlearning on the more realistic Weapons of Mass Destruction Proxy benchmark.
- Score: 36.888726242192504
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current LLM unlearning methods are not robust: they can be reverted easily with a few steps of finetuning. This is true even for the idealized unlearning method of training to imitate an oracle model that was never exposed to unwanted information, suggesting that output-based finetuning is insufficient to achieve robust unlearning. In a similar vein, we find that training a randomly initialized student to imitate an unlearned model transfers desired behaviors while leaving undesired capabilities behind. In other words, distillation robustifies unlearning. Building on this insight, we propose Unlearn-Noise-Distill-on-Outputs (UNDO), a scalable method that distills an unlearned model into a partially noised copy of itself. UNDO introduces a tunable tradeoff between compute cost and robustness, establishing a new Pareto frontier on synthetic language and arithmetic tasks. At its strongest setting, UNDO matches the robustness of a model retrained from scratch with perfect data filtering while using only 60-80% of the compute and requiring only 0.01% of the pretraining data to be labeled. We also show that UNDO robustifies unlearning on the more realistic Weapons of Mass Destruction Proxy (WMDP) benchmark. Since distillation is widely used in practice, incorporating an unlearning step beforehand offers a convenient path to robust capability removal.
Related papers
- Learning from Stochastic Teacher Representations Using Student-Guided Knowledge Distillation [64.15918654558816]
Self-distillation (SSD) training strategy is introduced for filtering and weighting teacher representation to distill from task-relevant representations only.<n> Experimental results on real-world affective computing, wearable/biosignal datasets from the UCR Archive, the HAR dataset, and image classification datasets show that the proposed SSD method can outperform state-of-the-art methods.
arXiv Detail & Related papers (2025-04-19T14:08:56Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Remaining-data-free Machine Unlearning by Suppressing Sample Contribution [22.30844094734722]
Un unlearned model should approach the retrained model, where the forgetting data are not involved in the training process and hence do not contribute to the retrained model.<n>We propose MU-Mis (Machine Unlearning by Minimizing input sensitivity) to suppress the contribution of the forgetting data.<n>It is the first time that a remaining-data-free method can outperform state-of-the-art unlearning methods that utilize the remaining data.
arXiv Detail & Related papers (2024-02-23T05:44:15Z) - UNDIAL: Self-Distillation with Adjusted Logits for Robust Unlearning in Large Language Models [12.45822383965784]
We introduce UnDIAL (Unlearning via Self-Distillation on Adjusted Logits), a novel and robust unlearning method.
Our approach leverages self-distillation to adjust logits and selectively reduce the influence of targeted tokens.
arXiv Detail & Related papers (2024-02-15T16:21:14Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
Diffusion models have demonstrated excellent potential for generating diverse images.
Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few.
We present a novel technique called BOOT, that overcomes limitations with an efficient data-free distillation algorithm.
arXiv Detail & Related papers (2023-06-08T20:30:55Z) - Model Sparsity Can Simplify Machine Unlearning [33.18951938708467]
In response to recent data regulation requirements, machine unlearning (MU) has emerged as a critical process.
Our study introduces a novel model-based perspective: model sparsification via weight pruning.
We show in both theory and practice that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner.
arXiv Detail & Related papers (2023-04-11T02:12:02Z) - One-Pixel Shortcut: on the Learning Preference of Deep Neural Networks [28.502489028888608]
Unlearnable examples (ULEs) aim to protect data from unauthorized usage for training DNNs.
In adversarial training, the unlearnability of error-minimizing noise will severely degrade.
We propose a novel model-free method, named emphOne-Pixel Shortcut, which only perturbs a single pixel of each image and makes the dataset unlearnable.
arXiv Detail & Related papers (2022-05-24T15:17:52Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z) - Self-Damaging Contrastive Learning [92.34124578823977]
Unlabeled data in reality is commonly imbalanced and shows a long-tail distribution.
This paper proposes a principled framework called Self-Damaging Contrastive Learning to automatically balance the representation learning without knowing the classes.
Our experiments show that SDCLR significantly improves not only overall accuracies but also balancedness.
arXiv Detail & Related papers (2021-06-06T00:04:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.