Data-driven Camera and Lidar Simulation Models for Autonomous Driving: A Review from Generative Models to Volume Renderers
- URL: http://arxiv.org/abs/2402.10079v2
- Date: Fri, 21 Mar 2025 14:13:38 GMT
- Title: Data-driven Camera and Lidar Simulation Models for Autonomous Driving: A Review from Generative Models to Volume Renderers
- Authors: Hamed Haghighi, Xiaomeng Wang, Hao Jing, Mehrdad Dianati,
- Abstract summary: This paper reviews the current state-of-the-art data-driven camera and Lidar simulation models and their evaluation methods.<n>It explores a spectrum of models from the novel perspective of generative models and volumes.
- Score: 7.90336803821407
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Perception sensors, particularly camera and Lidar, are key elements of Autonomous Driving Systems (ADS) that enable them to comprehend their surroundings to informed driving and control decisions. Therefore, developing realistic simulation models for these sensors is essential for conducting effective simulation-based testing of ADS. Moreover, the rise of deep learning-based perception models has increased the utility of sensor simulation models for synthesising diverse training datasets. The traditional sensor simulation models rely on computationally expensive physics-based algorithms, specifically in complex systems such as ADS. Hence, the current potential resides in data-driven approaches, fuelled by the exceptional performance of deep generative models in capturing high-dimensional data distribution and volume renderers in accurately representing scenes. This paper reviews the current state-of-the-art data-driven camera and Lidar simulation models and their evaluation methods. It explores a spectrum of models from the novel perspective of generative models and volume renderers. Generative models are discussed in terms of their input-output types, while volume renderers are categorised based on their input encoding. Finally, the paper illustrates commonly used evaluation techniques for assessing sensor simulation models and highlights the existing research gaps in the area.
Related papers
- Improved visual-information-driven model for crowd simulation and its modular application [4.683197108420276]
Data-driven crowd simulation models offer advantages in enhancing the accuracy and realism of simulations.
It is still an open question to develop data-driven crowd simulation models with strong generalizability.
This paper proposes a data-driven model incorporating a refined visual information extraction method and exit cues to enhance generalizability.
arXiv Detail & Related papers (2025-04-02T07:53:33Z) - Hierarchical and Decoupled BEV Perception Learning Framework for Autonomous Driving [52.808273563372126]
This paper proposes a novel hierarchical BEV perception paradigm, aiming to provide a library of fundamental perception modules and user-friendly graphical interface.
We conduct the Pretrain-Finetune strategy to effectively utilize large scale public datasets and streamline development processes.
We also present a Multi-Module Learning (MML) approach, enhancing performance through synergistic and iterative training of multiple models.
arXiv Detail & Related papers (2024-07-17T11:17:20Z) - InfRS: Incremental Few-Shot Object Detection in Remote Sensing Images [11.916941756499435]
In this paper, we explore the intricate task of incremental few-shot object detection in remote sensing images.
We introduce a pioneering fine-tuning-based technique, termed InfRS, designed to facilitate the incremental learning of novel classes.
We develop a prototypical calibration strategy based on the Wasserstein distance to mitigate the catastrophic forgetting problem.
arXiv Detail & Related papers (2024-05-18T13:39:50Z) - Visual Deformation Detection Using Soft Material Simulation for Pre-training of Condition Assessment Models [3.0477617036157136]
It proposes using Blender, an open-source simulation tool, to create synthetic datasets for machine learning (ML) models.
The process involves translating expert information into shape key parameters to simulate deformations, generating images for both deformed and non-deformed objects.
arXiv Detail & Related papers (2024-04-02T01:58:53Z) - Physics Sensor Based Deep Learning Fall Detection System [0.9128828609564524]
We build a complete system named TSFallDetect including data receiving device based on embedded sensor.
We exploit the sequential deep-learning methods to address this falling motion prediction problem based on data collected by inertial and film pressure sensors.
arXiv Detail & Related papers (2024-02-29T07:50:06Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - A Unified Generative Framework for Realistic Lidar Simulation in Autonomous Driving Systems [10.036860459686526]
Lidar is a widely used sensor type among the perception sensors for Autonomous Driving Systems.
Deep generative models have emerged as promising solutions to synthesise realistic sensory data.
We propose a unified generative framework to enhance Lidar simulation fidelity.
arXiv Detail & Related papers (2023-12-25T21:55:00Z) - Visual-information-driven model for crowd simulation using temporal convolutional network [1.712689361909955]
This paper proposes a novel visual-information-driven (VID) crowd simulation model.
The VID model predicts the pedestrian velocity at the next time step based on the prior social-visual information and motion data of an individual.
A radar-geometry-locomotion method is established to extract the visual information of pedestrians.
A temporal convolutional network (TCN)-based deep learning model, named social-visual TCN, is developed for velocity prediction.
arXiv Detail & Related papers (2023-11-06T09:58:04Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - CoDBench: A Critical Evaluation of Data-driven Models for Continuous
Dynamical Systems [8.410938527671341]
We introduce CodBench, an exhaustive benchmarking suite comprising 11 state-of-the-art data-driven models for solving differential equations.
Specifically, we evaluate 4 distinct categories of models, viz., feed forward neural networks, deep operator regression models, frequency-based neural operators, and transformer architectures.
We conduct extensive experiments, assessing the operators' capabilities in learning, zero-shot super-resolution, data efficiency, robustness to noise, and computational efficiency.
arXiv Detail & Related papers (2023-10-02T21:27:54Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
Key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge.
This study identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models.
arXiv Detail & Related papers (2023-09-01T19:29:53Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
We introduce a pipeline for data-driven simulation of a realistic LiDAR sensor.
We show that our model can learn to encode realistic effects such as dropped points on transparent surfaces.
We use our technique to learn models of two distinct LiDAR sensors and use them to improve simulated LiDAR data accordingly.
arXiv Detail & Related papers (2022-09-22T13:12:54Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
There are two main algorithmic approaches to autonomous driving systems.
Deep learning alone has achieved state-of-the-art results in many areas.
But sometimes it can be very difficult to debug if the deep learning model doesn't work.
arXiv Detail & Related papers (2022-03-28T20:29:50Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Improving Robot Dual-System Motor Learning with Intrinsically Motivated
Meta-Control and Latent-Space Experience Imagination [17.356402088852423]
We present a novel dual-system motor learning approach where a meta-controller arbitrates online between model-based and model-free decisions.
We evaluate our approach against baseline and state-of-the-art methods on learning vision-based robotic grasping in simulation and real world.
arXiv Detail & Related papers (2020-04-19T12:14:46Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
We outline a novel hybrid modeling approach that combines machine learning inspired models and physics-based models.
We are using such models for real-time diagnosis applications.
arXiv Detail & Related papers (2020-03-04T00:44:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.