論文の概要: A Language Model for Particle Tracking
- arxiv url: http://arxiv.org/abs/2402.10239v1
- Date: Wed, 14 Feb 2024 18:24:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-19 18:42:56.851962
- Title: A Language Model for Particle Tracking
- Title(参考訳): 粒子追跡のための言語モデル
- Authors: Andris Huang, Yash Melkani, Paolo Calafiura, Alina Lazar, Daniel
Thomas Murnane, Minh-Tuan Pham, Xiangyang Ju
- Abstract要約: 本稿では,粒子追跡のためのBERTモデルをトレーニングするためのトークン化検出器表現を提案する。
この研究は、粒子検出器理解の基礎モデルを開発するための第一歩である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Particle tracking is crucial for almost all physics analysis programs at the
Large Hadron Collider. Deep learning models are pervasively used in particle
tracking related tasks. However, the current practice is to design and train
one deep learning model for one task with supervised learning techniques. The
trained models work well for tasks they are trained on but show no or little
generalization capabilities. We propose to unify these models with a language
model. In this paper, we present a tokenized detector representation that
allows us to train a BERT model for particle tracking. The trained BERT model,
namely TrackingBERT, offers latent detector module embedding that can be used
for other tasks. This work represents the first step towards developing a
foundational model for particle detector understanding.
- Abstract(参考訳): 粒子追跡は大型ハドロン衝突型加速器のほぼ全ての物理解析プログラムにおいて重要である。
深層学習モデルは粒子追跡関連タスクに広く利用されている。
しかし、現在の実践は、教師付き学習技術を用いて、1つのタスクのために1つのディープラーニングモデルを設計および訓練することである。
トレーニングされたモデルは、トレーニングされたタスクに対してうまく機能するが、一般化能力は、あるいはほとんど示さない。
我々はこれらのモデルを言語モデルに統合することを提案する。
本稿では,粒子追跡のためのBERTモデルをトレーニング可能なトークン化検出器表現を提案する。
トレーニングされたBERTモデル、すなわちTrackingBERTは、他のタスクに使用できる遅延検出モジュールの埋め込みを提供する。
この研究は、粒子検出器理解の基礎モデルを開発するための第一歩である。
関連論文リスト
- Self-Supervised Radio Pre-training: Toward Foundational Models for Spectrogram Learning [6.1339395157466425]
Foundational Deep Learning(DL)モデルは、多種多様で多様なデータセットに基づいてトレーニングされた一般的なモデルである。
本稿では,無線信号を用いた基礎DLモデルの事前学習のための,新しい自己教師型学習手法であるMasked Spectrogram Modelingを紹介する。
論文 参考訳(メタデータ) (2024-11-14T23:56:57Z) - MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining [73.81862342673894]
ファンデーションモデルは、様々な画像解釈タスクを強化することで、リモートセンシング(RS)のランドスケープを再構築した。
事前訓練されたモデルを下流のタスクに転送することは、イメージ分類やオブジェクト識別タスクとして事前訓練の定式化によるタスクの相違に遭遇する可能性がある。
SAMRSデータセット上で、セマンティックセグメンテーション、インスタンスセグメンテーション、回転オブジェクト検出を含むマルチタスクによる事前トレーニングを行う。
我々のモデルは、シーン分類、水平・回転物体検出、セマンティックセグメンテーション、変化検出など、様々なRS下流タスクに基づいて微調整される。
論文 参考訳(メタデータ) (2024-03-20T09:17:22Z) - Masked Particle Modeling on Sets: Towards Self-Supervised High Energy Physics Foundation Models [4.299997052226609]
Masked Particle Modeling (MPM) は、無秩序な入力集合上の汎用的、転送可能、再利用可能な表現を学習するための自己教師付き手法である。
本研究では,コライダー物理実験における高エネルギージェットの試料中の方法の有効性について検討した。
論文 参考訳(メタデータ) (2024-01-24T15:46:32Z) - Towards A Foundation Model For Trajectory Intelligence [0.0]
実世界のユーザチェックインデータを用いて,大規模軌跡モデルのトレーニング結果を示す。
提案手法は,マスク付き軌道モデルを用いてベースモデルを事前学習する,事前学習と微調整のパラダイムに従う。
私たちの経験分析では、600万人以上のユーザーが生成した20億以上のチェックインの包括的データセットを利用しています。
論文 参考訳(メタデータ) (2023-11-30T00:34:09Z) - TRAK: Attributing Model Behavior at Scale [79.56020040993947]
本稿では,大規模な微分モデルに対して有効かつ計算的に抽出可能なデータ属性法であるTRAK(Tracing with Randomly-trained After Kernel)を提案する。
論文 参考訳(メタデータ) (2023-03-24T17:56:22Z) - Large-scale Multi-Modal Pre-trained Models: A Comprehensive Survey [66.18478838828231]
マルチモーダルな事前訓練型大型モデルは近年ますます注目を集めている。
本稿では, 自然言語処理, コンピュータビジョン, 音声処理における従来の深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・
次に,マルチモーダル・プレトレーニング・モデル(MM-PTM)のタスク定義,課題,メリットを紹介し,データ,目的,ネットワーク,知識強化による事前トレーニングに着目して,MM-PTMについて議論する。
論文 参考訳(メタデータ) (2023-02-20T15:34:03Z) - METRO: Efficient Denoising Pretraining of Large Scale Autoencoding
Language Models with Model Generated Signals [151.3601429216877]
本稿では,補助モデルにより生成された学習信号を用いて,大規模自動符号化言語モデルの事前学習を行う。
我々は「モデル生成dEnoising TRaining Objective」(METRO)というレシピを提案する。
結果、最大54億のパラメータからなるMETRO-LMは、GLUE、SuperGLUE、SQuADベンチマークで新しい最先端を実現する。
論文 参考訳(メタデータ) (2022-04-13T21:39:15Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
本稿では,タスク非依存ストレージから取得したMBRLエージェントのトレーニングサンプルを提供するRAMaというメタ学習型アドレッシングモデルを提案する。
このモデルは、期待されるエージェントのパフォーマンスを最大化するために、ストレージから事前のタスクを解く有望な軌道を選択することで訓練される。
論文 参考訳(メタデータ) (2021-10-25T20:02:57Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
本稿では,少数のトレーニング画像にのみ手動アノテーションを応用して,効果的なサルエント物体検出モデルを学習することを提案する。
我々は,このタスクを,少額の有能な物体検出とみなし,少数のコストの学習シナリオを促進するために,APL(Adversarialpaced Learning)ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-05T14:15:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。