論文の概要: Brant-2: Foundation Model for Brain Signals
- arxiv url: http://arxiv.org/abs/2402.10251v1
- Date: Thu, 15 Feb 2024 16:04:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-19 18:44:02.060577
- Title: Brant-2: Foundation Model for Brain Signals
- Title(参考訳): Brant-2:脳信号の基礎モデル
- Authors: Zhizhang Yuan, Daoze Zhang, Junru Chen, Geifei Gu, Yang Yang
- Abstract要約: 基礎的なモデルは、大量のラベルのないデータに対する事前トレーニングの恩恵を受ける。
ブラント-2は脳信号における最大の基礎モデルである。
- 参考スコア(独自算出の注目度): 5.854357721974317
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Foundational models benefit from pre-training on large amounts of unlabeled
data and enable strong performance in a wide variety of applications with a
small amount of labeled data. Such models can be particularly effective in
analyzing brain signals, as this field encompasses numerous application
scenarios, and it is costly to perform large-scale annotation. In this work, we
present the largest foundation model in brain signals, Brant-2. Compared to
Brant, a foundation model designed for intracranial neural signals, Brant-2 not
only exhibits robustness towards data variations and modeling scales but also
can be applied to a broader range of brain neural data. By experimenting on an
extensive range of tasks, we demonstrate that Brant-2 is adaptive to various
application scenarios in brain signals. Further analyses reveal the scalability
of the Brant-2, validate each component's effectiveness, and showcase our
model's ability to maintain performance in scenarios with scarce labels. The
source code and pre-trained weights are available at:
https://anonymous.4open.science/r/Brant-2-5843.
- Abstract(参考訳): 基本的なモデルは、大量のラベルのないデータを事前トレーニングすることで、少量のラベル付きデータを持つさまざまなアプリケーションで強力なパフォーマンスを実現する。
このようなモデルは、多数のアプリケーションシナリオを含むため、脳信号の分析に特に効果的であり、大規模なアノテーションの実行には費用がかかる。
本研究では,脳信号における最大の基礎モデルであるbrant-2を提案する。
頭蓋内神経信号のための基礎モデルであるbrantと比較すると、brant-2はデータの変異やモデリングスケールに対する堅牢性を示すだけでなく、より広い範囲の脳神経データにも適用できる。
幅広いタスクを実験することで、brant-2は脳信号の様々な応用シナリオに適応できることを実証する。
さらに分析した結果、Brant-2のスケーラビリティを明らかにし、各コンポーネントの有効性を検証し、ラベルの少ないシナリオでパフォーマンスを維持するモデルの能力を示す。
ソースコードと事前訓練されたウェイトは、https://anonymous.4open.science/r/Brant-2-5843で入手できる。
関連論文リスト
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - NeuroBind: Towards Unified Multimodal Representations for Neural Signals [20.02503060795981]
脳波、fMRI、カルシウムイメージング、スパイキングデータを含む複数の脳信号タイプを統一する表現であるNeuroBindを提案する。
このアプローチは、神経科学研究の進展、AIシステムの改善、神経補綴学と脳-コンピュータインターフェースの開発において大きな可能性を秘めている。
論文 参考訳(メタデータ) (2024-07-19T04:42:52Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
本稿では,脳波を連続的にモデル化するBrainODEというモデルを提案する。
遅延初期値とニューラルODE関数を不規則な時系列から学習することにより、BrainODEは任意の時点の脳信号を効果的に再構築する。
論文 参考訳(メタデータ) (2024-04-30T10:53:30Z) - Personalized identification, prediction, and stimulation of neural
oscillations via data-driven models of epileptic network dynamics [0.0]
脳波データから直接ててんかん性ネットワークダイナミクスの予測モデルを抽出するフレームワークを開発する。
本研究では,周期運転下での脳ネットワーク力学モデル間の直接対応を構築することができることを示す。
このことは、周期的な脳刺激がてんかん性ネットワークの病態状態を正常な機能的脳状態へと導くことを示唆している。
論文 参考訳(メタデータ) (2023-10-20T13:21:31Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - MBrain: A Multi-channel Self-Supervised Learning Framework for Brain
Signals [7.682832730967219]
本稿では,SEEGデータとEEGデータのいずれかを事前学習できる脳信号の自己教師型学習フレームワークについて検討する。
そこで我々は,異なるチャネル間の空間的および時間的相関を暗黙的に学習するために,MBrainを提案する。
我々のモデルは、最先端のSSLおよび教師なしモデルよりも優れており、臨床に展開する能力を持っている。
論文 参考訳(メタデータ) (2023-06-15T09:14:26Z) - BrainNet: Epileptic Wave Detection from SEEG with Hierarchical Graph
Diffusion Learning [21.689503325383253]
実世界のSEEGデータセットにおけるてんかん性波を検出するための,最初のデータ駆動型研究を提案する。
臨床的には、てんかん波の活動は脳の異なる領域間で伝播していると考えられている。
各患者に対して正確なてんかん原性ネットワークをどうやって抽出するかという問題は、神経科学の分野では未解決の問題のままである。
論文 参考訳(メタデータ) (2023-06-15T08:29:10Z) - Deep learning reveals the common spectrum underlying multiple brain
disorders in youth and elders from brain functional networks [53.257804915263165]
ヒトの初期および後期の脳障害は、脳機能における病理学的変化を共有する可能性がある。
病理的共通性に関する神経画像データによる重要な証拠はいまだ発見されていない。
多地点機能磁気共鳴画像データを用いたディープラーニングモデルを構築し、健康的な制御から5つの異なる脳障害を分類する。
論文 参考訳(メタデータ) (2023-02-23T09:22:05Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
脳内では、情報はコード化され、伝達され、行動を伝えるために使用される。
ニューロモルフィック回路は、脳内のニューロンの集団が使用するものと互換性のある方法で情報を符号化する必要がある。
論文 参考訳(メタデータ) (2022-12-08T15:16:04Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
音声ブックを聴く被験者の機能的磁気共鳴イメージングの時間軸予測に及ぼすテスト損失,トレーニングコーパス,モデルアーキテクチャの影響について検討した。
各モデルの訓練されていないバージョンは、同じ単語をまたいだ脳反応の類似性を捉えることで、脳内のかなりの量のシグナルをすでに説明していることがわかりました。
ニューラル言語モデルを用いたヒューマン・ランゲージ・システムの説明を目的とした今後の研究の実践を提案する。
論文 参考訳(メタデータ) (2022-07-07T15:37:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。